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Abstract

With representation of the global carbon cycle becoming increasingly complex in climate
models, it is important to develop ways to quantitatively evaluate model performance
against in situ and remote sensing observations. Here we present a systematic frame-
work, the Carbon-LAnd Model Intercomparison Project (C-LAMP), for assessing terres-
trial biogeochemistry models coupled to climate models using observations that span a
wide range of temporal and spatial scales. As an example of the value of such
comparisons, we used this framework to evaluate two biogeochemistry models that are
integrated within the Community Climate System Model (CCSM) – Carnegie-Ames-
Stanford Approach0 (CASA0) and carbon–nitrogen (CN). Both models underestimated
the magnitude of net carbon uptake during the growing season in temperate and boreal
forest ecosystems, based on comparison with atmospheric CO2 measurements and eddy
covariance measurements of net ecosystem exchange. Comparison with MODerate
Resolution Imaging Spectroradiometer (MODIS) measurements show that this low bias
in model fluxes was caused, at least in part, by 1–3 month delays in the timing of
maximum leaf area. In the tropics, the models overestimated carbon storage in woody
biomass based on comparison with datasets from the Amazon. Reducing this model bias
will probably weaken the sensitivity of terrestrial carbon fluxes to both atmospheric CO2

and climate. Global carbon sinks during the 1990s differed by a factor of two
(2.4 PgCyr!1 for CASA0 vs. 1.2 PgCyr!1 for CN), with fluxes from both models compa-
tible with the atmospheric budget given uncertainties in other terms. The models
captured some of the timing of interannual global terrestrial carbon exchange during
1988–2004 based on comparison with atmospheric inversion results from TRANSCOM
(r5 0.66 for CASA0 and r5 0.73 for CN). Adding (CASA0) or improving (CN) the
representation of deforestation fires may further increase agreement with the atmo-
spheric record. Information from C-LAMP has enhanced model performance within
CCSM and serves as a benchmark for future development. We propose that an open
source, community-wide platform for model-data intercomparison is needed to speed
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model development and to strengthen ties between modeling and measurement com-
munities. Important next steps include the design and analysis of land use change
simulations (in both uncoupled and coupled modes), and the entrainment of additional
ecological and earth system observations. Model results from C-LAMP are publicly
available on the Earth System Grid.
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Introduction

A robust finding of coupled climate–carbon models is
that the capacities of the ocean and the terrestrial bio-
sphere to store anthropogenic carbon will weaken in the
21st century from climate warming (Cox et al., 2000;
Friedlingstein et al., 2001; Fung et al., 2005; Denman
et al., 2007). This positive feedback whereby warming
further increases atmospheric CO2 has important im-
plications for climate mitigation policies designed to
stabilize greenhouse gas levels. It implies that to achieve
stabilization, trajectories of emissions reductions (e.g.,
Barker et al., 2007) will, themselves, depend on the
amount of future warming. Within terrestrial ecosys-
tems, the reductions in sink capacity with climate
warming are caused by at least two classes of feedback
mechanisms in current models: slowing of net primary
production (NPP) in tropical ecosystems with warming
and drying, and secondarily, faster carbon cycling and
decomposition of wood, detrital material and soil car-
bon (Friedlingstein et al., 2006; Matthews et al., 2007). In
models with dynamic vegetation decreases in NPP may
trigger species redistributions that amplify carbon loss
and regional warming (Betts et al., 2004; Cox et al., 2004).
Other factors that affect the strength of the terrestrial

biosphere–climate feedback include the climate sensi-
tivity (e.g., the temperature change for a CO2 doubling)
and the sensitivity of terrestrial carbon storage to atmo-
spheric composition changes. Models that store large
amounts of carbon on land in response to elevated
levels of atmospheric CO2, for example, have a smaller
positive climate–carbon feedback than models with a
lower CO2 storage sensitivity (Friedlingstein et al., 2003;
Matthews, 2007). This is because greater terrestrial
carbon storage causes CO2 to accumulate more slowly
in the atmosphere, and as a consequence, there is less
warming for a given trajectory of anthropogenic emis-
sions. Deforestation, in contrast, works to enhance the
climate–carbon feedback because a loss of forest cover
reduces the potential of the biosphere to store carbon in
woody pools in response to elevated levels of CO2 (Gitz
& Ciais, 2004). Deforestation and land use are coupled

with climate in other ways, including land manager
responses to drought (e.g., van der Werf et al., 2008), but
parameterizations of this have not been developed yet
for global models.
For the first generation of climate–carbon models, the

overall sensitivity of the land sink to warming varies by
a factor of 7 and the gain of the climate–carbon cycle
feedback varies by a factor of 5 (Friedlingstein et al.,
2006). While this range includes the climate sensitivities
of the parent climate models, their land carbon storage
sensitivity (averaging 1.4 " 0.5 PgCppm!1 CO2) varies
by a factor of 10 in the absence of climate change
(Denman et al., 2007). This range could expand further
as new classes of mechanisms are integrated within the
models (e.g., Field et al., 2007), including land use (e.g.,
Hurtt et al., 2006) and climate effects on nitrogen cycling
(e.g., Thornton et al., 2007). To reduce this uncertainty
and improve the models, comprehensive means are
needed for assessing model performance against avail-
able observations.
The testing requirements for the land component of

coupled climate–carbon models are unique from other
types of models such as land surface models (LSMs) or
stand-alone terrestrial biogeochemical models for sev-
eral reasons. First, the biogeochemistry, ecology, and
biophysics must be fully integrated. Ecological control
of leaf area by carbon and nutrient availability, for
example, subsequently influences evapotranspiration
and surface energy fluxes that in turn regulate climate
and ecosystem dynamics. This contrasts with many (but
not all) LSMs that have prescribed leaf area. Second, a
key application for these models is to characterize
carbon–climate feedbacks from preindustrial times
through the end of the 21st century, information that
then can be used in the design of realistic emissions
scenarios for stabilization. In this context, the models
must operate at scales that span minutes to centuries. To
capture feedbacks on decadal and centennial time
scales, the models must realistically simulate longer
lived carbon pools in trees and soils as well as their
sensitivity to changes in atmospheric composition and
climate. Relevant ecosystem–climate interactions that
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shape this sensitivity include physiological and canopy-
scale processes such as photosynthesis, decomposition,
leaf phenology, and allocation. Of equal importance are
processes that often operate on wider spatial and tem-
poral scales such as disturbance, recruitment, mortality,
migration, and management. These latter processes
play important roles in regulating community composi-
tion and diversity and their sensitivity to global change.
Past work to validate coupled climate–carbon models

has included comparison with ice core CO2 observa-
tions during the 19th and 20th centuries (Berthelot et al.,
2002), the mean annual cycle of atmospheric CO2 (Do-
ney et al., 2006) and its changing shape (Berthelot et al.,
2002), the contemporary carbon budget (Matthews,
2007) and measurements of the sensitivity of NPP to
elevated CO2 from free air carbon dioxide enrichment
(FACE) experiments (Matthews, 2007). These tests of
coupled models build upon an extensive intercompar-
ison and evaluation history within the terrestrial bio-
geochemistry and land modeling communities (Schimel
et al., 1997; Cramer et al., 2001; McGuire et al., 2001;
Dargaville et al., 2002; Morales et al., 2005). However, a
systematic framework evaluating the coupled behavior
of the land carbon system as well as the interaction
between climate and land biogeochemistry has been
lacking, and is needed to reduce and assess uncertain-
ties associated with future climate change projections.
Such an evaluation is hampered also by the lack of
global, multitemporal gridded datasets of terrestrial
carbon pools and fluxes, such as National Centers for
Environmental Prediction (NCEP) or European Centre
for Medium-Range Weather Forecast ERA-40 reanalysis
products currently available for atmospheric variables.
Here we present the first part of a systematic frame-

work for evaluating the land component of coupled
climate–carbon models, using observations we have
compiled that span multiple temporal and spatial
scales. We use these observations to evaluate two bio-
geochemistry models that are coupled to the Commu-
nity Climate System Model (CCSM) version 3.1
Community Land Model (CLM). The two terrestrial
biogeochemical modules are: (1) Carnegie-Ames-Stan-
ford Approach0 (CASA0; Fung et al., 2005; Doney et al.,
2006) and (2) carbon–nitrogen (CN; Thornton & Zim-
mermann, 2007; Thornton et al., 2007). In our analysis,
we develop a scoring system that weights the informa-
tion derived from different data streams. We conclude
by identifying directions for model improvements and
gaps in existing model-data intercomparison systems.

Methods

We first describe CLM, CASA0, and CN models. We
then describe the model simulation protocols and the

observations that we used to evaluate model perfor-
mance. In this first phase of the Carbon-LAnd Model
Intercomparison Project (C-LAMP), we forced the mod-
els in an uncoupled mode with atmospheric reanalysis
observations and atmospheric CO2 and N-deposition
trajectories during the 20th century to allow for direct
comparison with several different sets of interannually
varying observations. In a second (future) phase of C-
LAMP we will use partly-coupled models (land com-
ponent coupled with an interactive atmosphere climate
model) to evaluate other aspects of model performance.

Model description

The two biogeochemistry models described below were
directly coupled with a modified version of the CLM
version 3 (Dickinson et al., 2006). This meant that energy
and water exchange and gross primary production
(GPP) were estimated by CLM at each time step,
providing boundary conditions (including soil moisture
and temperature) for the biogeochemistry models.
Based on local resource availability and carbon ex-
change, the biogeochemistry models, in turn, prognos-
tically estimated leaf area that was used by CLM in the
following time step. Both biogeochemical models utilize
the same plant functional types (PFTs) and their geo-
graphical distribution as in CLM, except as noted as
follows for CN.
This version of CLM deviates from CLM3 in that

canopy leaf area and radiation interception includes
explicit treatment of sunlit and shaded canopy frac-
tions, as well as an analytical solution for vertical
canopy gradients of specific leaf area (Thornton &
Zimmermann, 2007). The photosynthetic parameter
Vcmax is calculated based on leaf nitrogen concentration
and leaf physiological parameters. This canopy integra-
tion scheme interacts with the nitrogen cycle in CN, but
is unconstrained for nitrogen availability in CASA0.
Additionally, vegetation and soil hydrology parameter-
izations were modified to improve evapotranspiration
partitioning and to reduce the dry soil bias in CLM3
(Lawrence et al., 2007). Many of these model changes
were implemented in CLM3.5 (Oleson et al., 2008). CN
additionally has unique hydrological parameterizations
that differ from CLM. CLM was configured to run with
a 20-min time step using a standard T42 Gaussian grid
with a resolution of approximately 2.81# 2.81.

CASA0

CASA0 is derived from the off-line land biogeochemis-
try model CASA (Potter et al., 1993; Randerson et al.,
1997) and tracks the flow of carbon through live vegeta-
tion, litter, and soil organic matter pools. A primary
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difference between the two models is that CASA esti-
mates monthly NPP from satellite observations of the
fraction of absorbed photosynthetically active radiation
(fAPAR), while CASA0 assumes NPP is 50% of the
instantaneous GPP calculated from CLM. CASA0

was used by Fung et al. (2005) to examine feedbacks
during the 21st century and by Doney et al. (2006) to
explore the dynamics of global climate–carbon cycle
interactions during a period without anthropogenic
forcing.
In CASA0, allocation of NPP to leaves, wood, and fine

roots depends on water availability and light limitation
following Friedlingstein et al. (1999). Leaf area is then
determined from the leaf carbon and specific leaf area
estimates described by Dickinson et al. (1998). Mortality
rates of leaves, wood, and fine roots are PFT dependent
and generate a flow of carbon into leaf, coarse woody
debris, and fine root litter pools. Heterotrophic respira-
tion and carbon flow in litter and soil organic matter
pools vary with soil temperature and moisture and
tissue chemistry. Altogether there are three living and
nine dead carbon pools, including four soil organic
matter pools that represent soil carbon fractions with
turnover times ranging from months to centuries. A
more detailed description of the model is provided by
Doney et al. (2006).

CN

CN is the result of merging the biophysical framework
of CLM with the fully prognostic carbon and nitrogen
dynamics of the terrestrial biogeochemistry model
Biome-BGC (version 4.1.2) (Thornton et al., 2002,
Thornton & Rosenbloom, 2005). The resulting model
(Thornton et al., 2007) is fully prognostic with respect to
all carbon and nitrogen state variables in vegetation,
litter, and soil organic matter, and retains all prognostic
quantities for water and energy in the vegetation–
snow–soil column from CLM. Vegetation pools include
leaf, respiring and nonrespiring woody components of
stem and coarse roots, and fine roots. Plant storage
pools allow carbon and nitrogen acquired in one grow-
ing season to be retained and then distributed as new
growth in subsequent years. Prognostic leaf phenology
is based on classification of PFTs as evergreen, seasonal
deciduous, or stress-deciduous, while prognostic leaf
area index (LAI) is based on the prognostic leaf carbon
pool and an assumed vertical gradients of specific leaf
area (Thornton & Zimmermann, 2007). The hetero-
trophic model includes carbon and nitrogen storage
and fluxes for a coarse woody debris pool, three litter
pools and four soil organic matter pools, arranged as a
converging trophic cascade (Thornton et al., 2005). A
prognostic treatment of fire is included based on the

model of Thonicke et al. (2001). Detailed descriptions for
all biogeochemical components of CN, and for those
aspects of the biophysical framework modified to ac-
commodate prognostic vegetation structure, are given
in Thornton et al. (2007).
CN uses the same PFTs as CLM except that it ex-

cludes temperate broadleaf deciduous trees from tropi-
cal regions and reclassifies these as tropical deciduous
trees. CN also removes the exponential decline in root-
ing distribution with depth used in CLM, replacing this
with a linearly decreasing rooting distribution that has a
shallower bottom rooting depth for grasses than for
shrubs and trees.

Model simulations

In the set of experiments presented here we forced the
models with an improved NCAR/NCEP atmospheric
reanalysis dataset in which temperature and precipita-
tion values were adjusted using monthly mean gridded
observations (Qian et al., 2006). The goal of these un-
coupled simulations was to allow for direct comparison
with interannually varying observations obtained dur-
ing the last few decades. Model simulations are sum-
marized in Table 1. Both models were spun up for
approximately 4000 years forced with repeated cycling
of the first 25 years of the reanalysis climate (1948–1972)
and fixed, preindustrial atmospheric CO2. The initial
500-year phase of the CN model spin-up employed an
accelerated decomposition technique (Thornton & Ro-
senbloom, 2005). At the end of model spin up (experi-
ment 1.1), a control simulation (experiment 1.2) was
performed for the period 1798–2004 using the same
repeating 25-year reanalysis climate forcing. A varying
climate simulation (experiment 1.3), branched from the
control in year 1948 and was forced by the full reana-

Table 1 Model simulations performed in C-LAMP phase 1

Run Description Time period

Forcing with observed climate
1.1 Spin-up $ 4000 years
1.2 Control 1798–2004
1.3 Varying climate 1948–2004
1.4 Varying climate, CO2, and N

deposition
1798–2004

FACE simulations
1.5 Control – CO2 levels and N

deposition after 2004 held
constant

1997–2010

1.6 Branch from Experiment 1.4
in 1997 to CO2 at 550 ppm

1997–2010

C-LAMP, Carbon-LAnd Model Intercomparison Project.
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lysis time series from 1948 to 2004. Both experiments 1.2
and 1.3 also had fixed, preindustrial atmospheric CO2.
A second transient simulation (experiment 1.4) started
from the end of model spin up and ran for the period
1798–2004. This simulation had a prescribed, time-vary-
ing atmospheric CO2 time series starting in 1798. For
CN, a nitrogen deposition climatology was used as a
model driver before 1890 followed by a prescribed
nitrogen deposition time series from 1890 to 2004.
Climate forcing in experiment 1.4 was the same as the
control from 1798 to 1947 and as experiment 1.3 from
1948 to 2004. No land use change or dynamic vegetation
simulations were included in this first C-LAMP analy-
sis: land cover was prescribed with preindustrial (year
1798) distributions using the dataset developed by
Feddema et al. (2005). This was done so that future
C-LAMP simulations could branch from this point with
transient land cover change.
The prescribed global atmospheric CO2 time series

was from the C4MIP reconstruction from Friedlingstein
et al. (2006), extended through 2004. The nitrogen de-
position climatology and 1890–2004 time series were
developed as part of the SANTA FE project (Lamarque
et al., 2005). Two additional simulations (experiments
1.5 and 1.6) were designed to test the response of the
models to a sudden increase in atmospheric CO2, fol-
lowing a protocol similar to FACE experiments. These
two latter experiments branched from experiment 1.4 in
1997, with CO2 levels abruptly increasing from 362 to
550 ppm in experiment 1.6. In experiment 1.5, CO2

levels followed atmospheric observations from 1997 to
2004 and then remained constant thereafter at
379.1 ppm. We extended these two simulations to 2010
to explore carbon sink dynamics during the time of
ongoing FACE experiments. More detailed information
about the spin up and simulation protocol is available
in Hoffman et al. (2008) and at http://www.climatemo
deling.org/c-lamp/protocol/protocol.html.
Metadata standards for terrestrial biosphere model

output were developed as part of the C-LAMP protocol.
Proposed as extensions to the netCDF Climate and
Forecast (CF) conventions (Eaton et al., 2008), these
naming conventions will be needed to support output
of model results coming from earth system models
performing simulations for the Intergovernmental
Panel on Climate Change (IPCC) Fifth Assessment
Report (AR5). The proposed extensions are described
at http://www.climatemodeling.org/c-lamp/protocol/
model_output.php. Model results from C-LAMP are
publicly available through the Earth System Grid Cen-
ter for Enabling Technologies (ESG-CET; Ananthakrish-
nan et al., 2007) under the same terms as the database
of physical climate model output used in the IPCC
AR4 (Meehl et al., 2007). The Earth System Grid (ESG;

http://www.earthsystemgrid.org/) is a distributed sys-
tem that allows registered users to download model
output, code, and ancillary data over the Internet
(Bernholdt et al., 2005). A new ESG node has been
deployed at ORNL to support C-LAMP.

Metrics

Multiple sets of observations exist for evaluating terres-
trial biogeochemistry model performance on a range of
temporal and spatial scales (supporting information
Fig. S1). Combining information from these different
data streams to evaluate model performance requires
consideration of the primary objective(s) of the model
simulations, an understanding of the uncertainties as-
sociated with each type of observation, and the degree
to which scaling issues influence the comparison. We
describe below the different observations used in our
analysis.

Leaf area

We compared model estimates with MODerate Resolu-
tion Imaging Spectroradiometer (MODIS) LAI observa-
tions (MOD15A2 collection 4; Myneni et al., 2002) with
additional adjustments to interpolate across periods of
cloud contamination as described by Zhao et al. (2005).
We specifically evaluated the models against three
aspects of the observations: the timing or phase of
maximum LAI (as a diagnostic of seasonality), max-
imum monthly LAI, and annual mean LAI. For the
mean and maximum, biases may exist in the satellite-
derived estimates from errors in atmospheric and ca-
nopy radiative transfer models used in the retrieval.
The metric of the seasonality, based on the month of
maximum LAI, should be less sensitive to these types of
biases, and thus probably has a lower overall level of
uncertainty. In our analysis, we compared 2000–2004
monthly mean MODIS values with model estimates
from experiment 1.4 sampled during the same time
period.
In climate–carbon models, leaf area is a key prognos-

tic variable that couples biophysics, hydrology, and
biogeochemistry. To account for different levels of un-
certainty in our scoring system we gave more weight to
the comparison of LAI phase than to the maximum or
mean. For the phase, we computed the temporal offset
(in months) between model and observations in each
cell, normalized this amount by a maximum possible
offset (6 months), and then averaged this quantity for all
the grid cells in each biome. A quantitative description
of this metric and our scoring approach for LAI is
provided in the supporting information [including
Eqn (s1)]. For the maximum and annual mean LAI
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comparisons, we estimated the absolute difference be-
tween the model and satellite observations at each grid
cell, normalized this quantity by the sum of model and
observations, and then averaged this quantity for all the
grid cells in a biome [Eqn (s2) in the supporting
information].

NPP

Even though considerable uncertainty exists with field-
based measurement approaches, we included NPP as
one of our metrics because it is a fundamental quantity
that determines the availability of food, fuel, and fiber
resources for humans. It also regulates carbon storage in
long-lived pools (such as wood) that, in turn, deter-
mines the magnitude of terrestrial sinks and sources in
response to various drivers of global change. We used
two data sources for our comparisons: compilations of
NPP observations from the Ecosystem Model Data
Intercomparison (EMDI) (Olson et al., 2001) and spatial
patterns of NPP derived using MODIS satellite observa-
tions (Zhao et al., 2005, 2006). To extract information
from these two datasets, we designed four different
comparisons. Using the EMDI observations, we made
(1) point-by-point comparisons of observations and
corresponding model grid cells and (2) histograms of
NPP vs. precipitation for both the observations and the
models. We evaluated model performance using Eqn
(s2) in the supporting information in grid cells where
EMDI observations were available. Separate compari-
sons were made for EMDI observations classified as
high quality (81 sites; class A) and intermediate quality
(933 sites; class B). NPP observations were compared
with mean annual NPP averaged during 1975–2000
from experiment 1.4.
A large mismatch in spatial scale between the site-

level EMDI observations and the size of an individual
model grid cell probably compromises the value of this
dataset for evaluating model performance. In contrast,
MODIS NPP estimates are based on high resolution
(1 km) satellite measurements of the fAPAR across the
entire domain of a model grid cell, potentially limiting
errors associated with scaling. Here we used the
MOD17A3 collection 4.5 product (Heinsch et al., 2003).
Biases could exist, however, in MODIS NPP if there are
errors associated with the underlying algorithms that
convert satellite radiances to fAPAR or with the con-
version of APAR to NPP using a light use efficiency
model. To try to avoid these biases in our scoring
system (but still maintaining access to the rich spatial
information from the satellite observations), we com-
puted the square of the Pearson correlation coefficient
(r2) between MODIS NPP and the models using all

model grid cells and, separately, using the latitudinal
zonal means.

The annual cycle of atmospheric carbon dioxide

Measurements of the annual cycle of atmospheric CO2

from NOAA’s Global Monitoring Division (GMD) and
other networks (Globalview; Masarie & Tans, 1995)
provide a means to evaluate model fluxes of monthly
NEE for biomes in the northern part of the northern
hemisphere. Seasonal NEE fluxes are controlled by both
the magnitude and timing of NPP and the temperature
sensitivity of heterotrophic respiration (Kaminski et al.,
2002; Randerson et al., 2002). Measurements of the
annual cycle are a robust constraint at a large spatial
scale on the combined set of processes regulating NEE
because (1) ocean and fossil fuel fluxes contribute only
weakly to seasonal variations in CO2 in the northern
hemisphere (Randerson et al., 1997; Heimann et al., 1998;
Nevison et al., 2008) and (2) the CO2 measurements are
precise (Conway et al., 1994). These data-model com-
parisons are sensitive, however, to biases in the atmo-
spheric model–particularly with respect to convection,
planetary boundary layer mixing, and other processes
that regulate vertical mixing (Stephens et al., 2007; Yang
et al., 2007).
To compare with the Globalview observations, we

combined CASA0 and CN surface CO2 fluxes with
monthly atmospheric impulse functions from the At-
mospheric Tracer Transport Model Intercomparison
Project (TRANSCOM) phase 3 level 2 experiments
(Gurney et al., 2004) to construct simulated annual
cycles of atmospheric CO2. Using techniques applied
in interannual inversions, the response functions were
used to fill a matrix (the H matrix defined in Baker et al.,
2006). Monthly NEE fluxes from CASA0 and CN 1.4
experiments for 1988–2000 were aggregated within each
of the 11 TRANSCOM land basis regions. The aggre-
gated fluxes were multiplied by the H matrix to con-
struct modeled 1991–2000 interannual CO2 mixing time
series at observation stations. We computed an annual
cycle for each of the 13 TRANSCOM atmospheric
models and report the model mean. For our scoring
system, we estimated model performance in three dif-
ferent latitude bands in the northern hemisphere. We
computed the square of the Pearson correlation coeffi-
cient (as a metric of phase) and the ratio of model to
observed amplitudes (as a metric of magnitude) for
each Globalview station. Each station was weighted
equally in constructing the zonal means. We assigned
a higher number of possible points to the 90–601N and
30–601N latitude zones than to the EQ – 301N band
because the signal to noise ratio of the observed annual
cycle is higher at mid and high latitudes and because
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the contribution in these bands from other fluxes (from
ocean and fossil fuel fluxes) is substantially lower.

Eddy covariance measurements of energy and carbon

Eddy covariance measurements provide a powerful
constraint on surface energy exchange (Stockli et al.,
2008), the seasonal dynamics of NEE (Falge et al., 2002)
and GPP (Falge et al., 2002; Heinsch et al., 2006). Prog-
nostic leaf area from the biogeochemical model must be
integrated with other aspects of the LSM to predict, for
example, the flow of available energy into latent and
sensible heat. Here we compared the models with
available gap-filled Ameriflux level 4 data (http://public.
ornl.gov/ameriflux/available.shtml). We made specific
comparisons against monthly mean fluxes of (1) NEE,
(2) GPP, (3) latent heat, and (4) sensible heat. We
sampled the model grid cells (from experiment 1.4)
during each year that the observations were available
to build a multiyear set of mean monthly fluxes through
2004. We estimated model-data agreement using Eqn
(s2) in the supporting information at each site using the
monthly means, and weighted information from each
site equally in constructing our overall score. We as-
signed fewer scoring points to the GPP and NEE
comparisons based on a subjective assessment that
these fluxes had higher measurement and scaling un-
certainties, respectively, than concurrent latent and
sensible heat fluxes (see text in supporting information).
We present specific site-level comparisons for Sylva-

nia Wilderness (Desai et al., 2005), Harvard Forest
(Barford et al., 2001), and Walker Branch (Wilson &
Baldocchi, 2001). For our overall scoring system, how-
ever, we used information for each variable from all
available Ameriflux sites. This included information
from 74 sites, ranging from arctic tundra at Atqasuk
(701N) to pine forests at the Kennedy Space Center
(281N). A primary source of uncertainty in the model-
data comparison for eddy covariance observations is
the spatial scale mismatch. This may be improved in
future by forcing the models directly with site-level
climate observations and with PFT distributions that
match the observed distribution within the tower foot-
print (e.g., Stockli et al., 2008).

Aboveground biomass stocks and fluxes

Aboveground carbon in contemporary forests is a large
and vulnerable carbon pool that is sensitive to both land
use and climate change. The size of this pool is one of
the primary uncertainties associated with estimates of
contemporary carbon loss from deforestation. Within
the Amazon basin, considerable effort has gone into
developing methods to measure and extrapolate forest

biomass to basin-wide inventories (Fearnside, 1992;
Houghton et al., 2001). In Brazil’s Amazonian forests,
estimates of total live and dead biomass (including
coarse roots) range between 39 and 93PgC, with a mean
and standard error of 70 " 8PgC (Houghton et al., 2001).
To compare with model estimates, we used the map of
contemporary (ca. 2000) aboveground live biomass
developed by Saatchi et al. (2007). This map was devel-
oped using 540 plot measurements of biomass, includ-
ing the 44 measurements summarized by Houghton
et al. (2001), and a decision tree classification approach
based on multiple satellite data sets. Within the Amazon
basin, mean forest biomass (including live, dead, and
belowground wood) was 158MgCha!1 for a total of
86PgC within the study domain of 5.46# 106 km2

(Saatchi et al., 2007). For our scoring metric we used
Eqn (s2) in the supporting information. We specifically
compared model output for the year 2000 from experi-
ment 1.4 with the observations at each grid cell.

Sensitivity of NPP to increasing levels of
atmospheric CO2

To characterize the sensitivity of model NPP to elevated
levels of CO2 we performed two model simulations
described above (experiments 1.5 and 1.6) to mimic
control and treatment plots in FACE experiments. We
made a direct comparison of temperate forest grid cell
NPP increases with site level averages from Norby et al.
(2005) – estimating the percent increases in NPP sepa-
rately for grid cells corresponding to each of the four
FACE sites. The model-data differences for the four sites
were used with Eqn (s2) in the supporting information
to generate a scoring metric. We also report the zonal
mean responses of the two models.
We computed the biotic growth factor, bfert, as:

bfert ¼
ðNPPf !NPPiÞ=NPPf

lnðCf=CiÞ
ð1Þ

where NPPi was the mean NPP from the control during
1997–2001 (exp. 1.5) and NPPf was the mean NPP from
the FACE simulation (exp. 1.6) for this same period.
Ci and Cf were the control ($365 ppm) and FACE
(550 ppm) atmospheric CO2 mixing ratios.

Interannual variability in carbon fluxes

We compared model estimates of interannual variabil-
ity in NEE with flux estimates from TRANSCOM (Baker
et al., 2006). The TRANSCOM fluxes were obtained
using Globalview CO2 measurements and the same
impulse–response functions described above. The
inversion was based on observations from 78 flask
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stations and a Bayesian approach with seasonally vary-
ing a priori uncertainties for land regions, time-invariant
prior uncertainties for the ocean, and a diagonal error
covariance matrix which was comprised of the variance
of the observations measured at each station. Fluxes
from Baker et al. (2006) spanned the 1988–2003 period.
For comparison with C-LAMP models, they were ex-
tended by Baker through 2004 using the same station
network and inversion approach (D. Baker, personal
communication, March 2008). Our scoring metric com-
bined information about (1) the correlation between the
global annual mean model fluxes and the observations
during 1988–2004 and (2) the magnitude of model
variability as compared with that in the observations.
Fire emissions were assessed by comparing CN with

the Global Fire Emissions Database version 2 (GFEDv2)
(van der Werf et al., 2006). The version of CASA0

evaluated here did not predict fires. GFEDv2 estimates
of burned area were constructed by combining MODIS
active fire observations with MODIS burned area tiles
(where available) using a regression tree approach
(Giglio et al., 2006). We used Eqn (s2) in the supporting
information with globally averaged monthly fluxes
during 1997–2004 to estimate model performance.
We note that both the TRANSCOM and GFEDv2

fluxes were obtained using models as key intermediary
steps in transforming raw observations to fluxes. Un-
certainties in these models – including biases in atmo-
spheric transport for TRANSCOM and biases in fuel
loads and combustion completeness for GFEDv2 are
difficult to quantify. As a result, the total number of
points we assigned to these comparisons in our scoring
system was lower than for other classes of constraints in
the transient dynamics section. We expect the quality of
both these time series to improve in future with new
satellite observations (e.g., Crisp et al., 2004) and data
assimilation systems.

Results

Comparison with MODIS LAI showed that for both
models, the timing of maximum leaf area lagged behind
the observations by 1–2 months (Fig. 1). In many boreal
and arctic ecosystems, for example, maximum observed
LAI occurred in July, whereas in the models the max-
imum occurred in August (CASA0) or September (CN).
These lags also occurred in moisture-limited savanna
ecosystems, although CN matched observed patterns
reasonably well in southern hemisphere South America
and CASA0 performed reasonably well in Africa. The
systematic nature of these timing delays suggests that
the prognostic leaf area schemes for both models may
underestimate carryover pools of carbohydrates from
one growing season to the next – and thus the potential

for rapid leaf expansion at the onset of the growing
season. For other aspects of LAI, including mean and
maximum levels, the models performed reasonably well
in most biomes (data not shown). One exception was
that LAI was low in CN in many boreal and arctic
regions. This bias was partly a consequence of the
coupling to the hydrology model that did not adequately
capture freeze-thaw dynamics (Lawrence et al., 2007).
Direct comparison with EMDI site-level NPP showed

that CASA0 was higher than the observations in inter-
mediate and high productivity areas, whereas CN was
lower than the observations in low productivity areas
(supporting information Fig. S2). This pattern of bias
remained the same when the models were compared as
a function of precipitation level (Fig. 2) and latitude
(supporting information Fig. S3). Specifically, CASA0

had a high bias in high precipitation and tropical areas,
whereas CN had a low bias of similar relative magni-
tude in boreal and arctic ecosystems.
Both models substantially underestimated the seaso-

nal amplitude of CO2 in the northern hemisphere –
CASA0 by a factor of $2 and CN by a factor $3 (Table 2).
CN also had a phase offset with the observations, with
drawdown of CO2 in spring occurring 1–3 months
earlier than in the observations (Fig. 3). For CASA0 the
smaller amplitude was probably caused by either a
temperature sensitivity of heterotrophic respiration
(e.g., a Q10 factor) that was too high in northern eco-
systems or a seasonal distribution of NPP that was not
concentrated enough during the middle part of the
growing season. In contrast, for CN the low NPP in
ecosystems north of 401N (supporting information Fig.
S3) also reduced the magnitude of heterotrophic re-
spiration and thus the magnitude of seasonal variations
in NEP.
Seasonal variations in NEE were substantially smaller

in the models than in the Ameriflux observations (Fig.
4) and are consistent with the model biases described
above for the annual cycle of CO2. One important
contributor to this bias was that in both models, the
growing season for GPP was too long in temperate
forest ecosystems – starting earlier in the spring and
extending later in the fall than in the observations. The
models also generally under predicted the rate of GPP
increase at the onset of the growing season, including at
three sites shown in Fig. 4 and at Lost Creek (461N),
Park Falls (461N), Toledo (421N), Niwot Ridge (401N),
and Missouri Ozark (391N) sites (data not shown).
In terms of energy exchange, the models captured

patterns of latent heat more accurately than fluxes of
sensible heat, with mean scores of 0.71 and 0.52 for CN
and 0.71 and 0.54 for CASA0 [using Eqn (s2) in the
supporting information averaged across all L4 Ameri-
flux sites]. A large model bias was underestimation of
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Fig. 1 Month of maximum leaf area index from (a) MODIS, (b) CASA0, and (c) CN. The observations are from the MOD15A2 collection

4 LAI product from MODIS (Myneni et al., 2002) with additional adjustments to interpolate across periods of cloud contamination as

described by Zhao et al. (2005). CASA, Carnegie-Ames-Stanford Approach; CN, carbon–nitrogen; LAI, leaf area index; MODIS,

MODerate Resolution Imaging Spectroradiometer.
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sensible heat fluxes during winter and spring in tempe-
rate and boreal ecosystems. Solar radiation estimates
from the reanalysis product used to drive the models
(Qian et al., 2006) agreed reasonably well with site-level
observations, with a score of 0.93 when averaged across
all Ameriflux sites. This implies that incoming short-
wave (and cloudiness) was not the primary reason for
the model bias. Further diagnosis will require addi-
tional net radiation and albedo observations. These
variables are not currently available for the publicly
available level 4 gap-filled product.
Within the Amazon basin, both models substantially

overestimated aboveground live biomass (Fig. 5). The
basin-wide total from Saatchi et al. (2007) was 69PgC
compared with 199 PgC for CASA0 and 161 PgC for
CN. Even though the models had a substantial bias in
magnitude, they both reproduced the spatial pattern in
South America reasonably well (r5 0.96 for CASA0 and
r5 0.86 for CN). Some, but certainly not all, of the

positive bias in the basin-wide total in the models, can
be attributed to high levels of biomass on the perimeter
of the basin (particularly in the south) that resulted
from our use of a preindustrial land cover map that had
higher fractions of forest cover than what was observed
circa 2000 (the time period of the map from Saatchi et al.,
2007).
To further assess the causes of this model bias in the

tropical forest aboveground live biomass pool, we com-
pared the models with carbon budget observations
from Amazonia (Miller et al., 2004; Vieira et al., 2004;
Figueira et al., 2008; Malhi et al., 2009). GPP in both
CASA0 (3220 gCm!2 yr!1) and CN (2900 gCm!2 yr!1)
was similar to observed levels (3330 " 420 gCm!2 yr!1)
(Figueira et al., 2008; Malhi et al., 2009). A primary cause
of the excess woody biomass in CASA0 was that the
flow of GPP to autotrophic respiration was too low. In
CASA0, autotrophic respiration was prescribed at 50%
of GPP whereas the mean of observations from Malhi
et al. (2009) show that 65 " 10% of GPP was respired in
three mature tropical forest ecosystems (Fig. 6). Another
contributing factor was that in both models NPP alloca-
tion to wood was too high, with levels of
810 gCm!2 yr!1 and 540 gCm!2 yr!1, respectively, for
CASA0 and CN compared to 470 " 100 gCm!2 yr!1 for
the mean of the three sites reported by Malhi et al.
(2009). Wood turnover times agree reasonably well with
observed pools and fluxes: 37 and 44 years in CASA0

and CN compared with a mean of 40 years from Malhi
et al. (2009). Other studies report even lower wood NPP
fluxes (at approximately 200 gCm!2 yr!1), however,
implying that the turnover time of aboveground live
biomass is approximately 90 years (assuming the same
pool size) (Vieira et al., 2004; Figueira et al., 2008).
In response to an instantaneous increase in CO2

mixing ratio to 550 ppm in 1997, both models exhibited
a positive step change in NPP, with CASA0 increasing
globally by 17% and CN by 10% during the first 5 years
after CO2 enrichment (Fig. 7). Carbon uptake by the
models, in turn, showed a rapid response with CASA0

increasing to 12.5 PgCyr!1 and CN to 4.2 PgCyr!1 in
the first year. The disproportionately large NEE re-
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Table 2 Model estimates of the annual cycle of atmospheric CO2

Latitude
Zone

Number of
obs. stations

Globalview (GV) seasonal
amplitude (ppm)

CASA0 CN

Correlation
w/GV (r)

Amp. Ratio:
CASA0/GV

Correlation
w/GV (r)

Amp. Ratio:
CN/GV

60–901N 7 14.6 " 0.5 0.97 " 0.02 0.43 " 0.02 0.77 " 0.06 0.33 " 0.02
30–601N 28 12.9 " 4.9 0.96 " 0.03 0.49 " 0.14 0.84 " 0.07 0.37 " 0.13
0–301N 11 7.0 " 1.5 0.96 " 0.08 0.46 " 0.04 0.91 " 0.06 0.31 " 0.03

CASA, Carnigie-Ames Stanford Approach; CN, Carbon-nitrogen; GV, Globalview observations.
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sponse in CASA0 (almost threefold larger than CN) can
only be partly attributed to the higher sensitivity of
NPP to CO2 enrichment; other important factors in-
cluded a higher baseline NPP and similar turnover
times in pools involved with initial carbon storage.
At the four model grid cells corresponding to the

FACE experiments analyzed by Norby et al. (2005),
CASA0 and CN had NPP increases of 17 " 2%
(bfert5 0.43 " 0.04) and 7 " 3% (bfert5 0.18 " 0.09) dur-
ing the first 5 years, respectively, compared with an
observed increase of 27 " 2% (bfert5 0.67). Both models
showed a decreasing trend in NPP response between
401N and 701N (supporting information Fig. S4) which

is consistent with decreasing temperatures limiting the
role of elevated CO2 in suppressing photorespiration
(Hickler et al., 2008). In arid regions in western North
America and central Asia NPP in CASA0 had a much
larger response than CN, including a 28% increase in
broadleaf deciduous temperate shrubs vs. a 12% in-
crease in CN. This suggests that increases in water use
efficiency may be a more important factor in shaping
the overall response in CASA0 than in CN (and as
compared with the LPJ-GUESS as analyzed by Hickler
et al., 2008). The different spatial patterns in the two
models are mostly unconstrained by existing observa-
tions and further highlight the need for future FACE
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experiments that span a much broader range of biomes
and climate (Hickler et al., 2008).
Climate variability from the NCAR/NCEP driver

dataset led to substantial interannual variability in
carbon exchange, with a standard deviation of
1.1 PgCyr!1 for CASA0 and 0.8 PgCyr!1 for CN during
1991–2000 (supporting information Fig. S5a). Although
the two models had carbon sinks that differed by a
factor of 2 during 1991–2000 (!2.4 PgCyr!1 for CASA0

and !1.2 PgCyr!1 for CN), both estimates are compa-
tible with our understanding of the contemporary car-
bon cycle given uncertainties associated with the size of
the deforestation flux and ocean exchange (Denman
et al., 2007). Assuming, specifically, that the sum of land
and ocean sinks was 3.0 PgCyr!1 during the 1990s,
CASA0 was compatible with a larger deforestation flux
(for example, 1.2 PgCyr!1) and smaller ocean sink (e.g.,
1.8 PgCyr!1), whereas CN was compatible with a
smaller deforestation flux (e.g., 0.6 PgCyr!1) and a
larger ocean flux (e.g., 2.4 PgCyr!1). In the absence of

climate warming during 1948–2004, contemporary
carbon sinks in the two models would have been
even larger: a mean of !2.7 PgCyr!1 for CASA0

and !1.8 PgCyr!1 for CN during 1991–2000 (support-
ing information Fig. S5b). Climate changes alone, in-
cluding a warming trend on land from the 1970s to
1990s, caused the net flux in both models to change
from a sink to a source (supporting information
Fig. S5c).
Both models captured some of the interannual varia-

bility in land fluxes during 1988–2004 based on compar-
ison with TRANSCOM-derived estimates (Fig. 8). The
largest positive anomaly for both the TRANSCOM esti-
mates and the models occurred during the 1998 El Nino.
The models were significantly correlated (Po0.01) with
TRANSCOM anomalies (r5 0.66 for CASA0 and r5 0.73
for CN) and had year-to-year variability that was similar
in magnitude to the observations (1.0 PgCyr!1 standard
deviation for CASA0, 0.7 PgCyr!1 for CN, and
1.0PgCyr!1 for TRANSCOM).
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The CN model estimated the spatial pattern and
annual cycle of fire emissions reasonably well in many
biomes, including C3 grasslands, tropical savannas, and

tropical forests. The model underestimated the magni-
tude of contemporary global emissions, however, by a
factor of 3. Global CN fire emissions were 0.7 PgCyr!1

during 1997–2004 whereas GFEDv2 estimates were
2.3 PgCyr!1 (Fig. 9). Some of the low model bias here
is expected given that the model simulation used in the
comparison (experiment 1.4) did not include land use
change. Deforestation-linked fires, for example, contri-
bute substantially to contemporary global fire emis-
sions, are sensitive to drought, and have been
quantitatively linked to the large increase in the growth
rate of atmospheric CO2 observed during the 1997/1998
El Nino (Page et al., 2002; Van der Werf et al., 2008).
Capturing this interannual variability probably also
would increase the model’s capability to reproduce
both the phase and magnitude of interannual variability
predicted by TRANSCOM (e.g., Fig. 8).
Our scoring system combined information from dif-

ferent classes of observations with the goal of providing
an integrated performance benchmark relevant for cli-
mate–carbon simulations (Table 3). We assigned 40% of
the score to LAI, NPP, and atmospheric CO2 annual
cycle comparisons. Together, these observations pro-
vide an indication of a model’s capability to represent
contemporary spatial patterns of important ecosystem
fluxes and their sensitivity to seasonal variations in
climate. We assigned 30% of the score to eddy covar-
iance observations of energy and CO2 fluxes – recogniz-
ing the central role of these data in quantifying a
model’s ability to represent land surface processes on
hourly to interannual time scales. A third set of com-
parisons accounted for the remaining 30% of the score
and were designed to test the transient dynamics of the
models on annual to centennial timescales. These in-
clude comparisons with biomass inventory observa-
tions, FACE experiments, and interannual variability
in net ecosystem fluxes and fire emissions. Within
individual measurement classes, we gave greater
weight to comparisons for which the observations had
lower levels of measurement or scaling uncertainty.
Out of 100 possible points, CASA received a score of

65.7 and CN received a score of 58.4. A perfect score
probably was not possible given uncertainties asso-
ciated with scaling several classes of observations and
uncertainties in the data products. The different score
components, nevertheless, provide a benchmark for
gauging model improvement before their use in the
IPCC 5th Assessment. Additional work is needed to
develop scoring metrics that do not penalize models
when model-data differences are within the uncertainty
range of the observations. This process will likely
require assigning subjective estimates of uncertainties
that combine information on measurement precision
with other types of error associated with systematic

Fig. 5 (a) Aboveground live biomass in the Amazon basin

derived using a combination of plot measurements and remote

sensing approaches (Saatchi et al., 2007) compared to (b) CASA0

and (c) CN model estimates. CASA, Carnegie-Ames-Stanford

Approach; CN, carbon–nitrogen.
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biases in sampling approaches and scaling require-
ments.

Discussion

Recommendations for model improvement

The C-LAMP analysis above quantifies strengths and
weaknesses in the simulations by two land biogeochem-
ical modules. We present here, as illustrations, how the
analysis suggests strategies for model improvement.
The strategies may be useful for other land biogeochem-
ical models which share common features and para-
meterizations with CASA0 or CN.
Growing season net flux is the cumulative carbon flux

into the land surface during months when GPP exceeds
ecosystem respiration and is regulated both by the
magnitude of GPP and the phasing of ecosystem re-
spiration relative to GPP. Model estimates of growing
season net flux in the northern hemisphere were too low
by a factor of 2–3 based on comparison with eddy
covariance NEE and the annual cycle of atmospheric
CO2. As previously discussed, part of this low bias in
CN was a result of coupling to a hydrology model that
inadequately captured dynamics in frozen soils. Subse-
quent improvements to the hydrology (Lawrence et al.,
2007) increased LAI and NPP in CN in northern regions
(after completion of the C-LAMP runs) but only partly
improved the low bias in growing season net flux. For
both CN and CASA0, three additional aspects of the
models probably need adjusting – including the repre-

sentation of prognostic LAI, temperature limitation of
GPP at low temperatures, and the sensitivity of respira-
tion to temperature.
By shifting the timing of peak LAI in the models from

August or September to July as observed in northern
ecosystems (Fig. 1), the models may increase carbon
uptake during the middle of the growing season, im-
proving agreement with the observations. In temperate
forests, there is some evidence that simulated GPP is too
high during fall and spring (Fig. 4). After adjusting LAI,
additional increases in the low-temperature limitation
of photosynthesis may be needed to reduce GPP during
these shoulder seasons. Concurrently, reducing the Q10

temperature sensitivity of heterotrophic respiration
would shift more respiration from mid-summer to fall
and spring, further increasing net carbon uptake during
the middle part of the growing season. These latter two
classes of model adjustment may have important con-
sequences for the strength of the carbon–climate feed-
back in long-term transient simulations. Both would
tend to reduce g land [gL – the temperature sensitivity of
carbon storage on land (Friedlingstein et al., 2006)] – and
would reduce the gain of the carbon-cycle climate feed-
back. In this respect, eddy covariance and atmospheric
CO2 observations offer a partial constraint on long term
dynamics. A crucial uncertainty remains, however, with
respect to whether the temperature sensitivity of longer
turnover carbon pools in soils is the same as that of
more rapidly cycling pools that contribute to seasonal
dynamics (Knorr et al., 2005; Davidson & Janssens,
2006).
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Malhi et al.(2009)
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41%      41%                 18% 14%      60%                 26%41%      52%                 7%

Fig. 6 Carbon pools and fluxes in tropical forests from a synthesis of observations from the Amazon (Malhi et al., 2009) compared with

the models.
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Another important deficiency in both models was
that woody biomass in tropical forests was too high –
by 67–188% for CASA0 and by 27–132% for CN based
on comparison with syntheses by Malhi et al. (2009) and
Saatchi et al. (2007). In CN, the model has been im-
proved subsequently by changing the dynamic wood
allocation algorithm. Wood allocation as a fraction of
total biomass allocation was originally treated as a
linearly increasing function of annual NPP as observed
in global forest NPP datasets (e.g., Cannell, 1982). The
Amazon biomass comparison here shows that the ex-
trapolation of this relationship to the highest levels of
NPP is not realistic. The CN model was revised to use
an approximate linear relationship for low and moder-
ate NPP, but with an asymptote at high NPP limiting
the ratio of wood to leaf allocation to 2.3. In CASA0,
increasing the flow of GPP to autotrophic respiration
would improve agreement with the tropical above-
ground live biomass measurements. This would also
improve model agreement with a recent synthesis of
observations that shows autotrophic respiration often
exceeds NPP – accounting for 57 " 2% (mean " 1 SE) of
GPP when averaged across different forest types (Litton
et al., 2007).
The effect of reducing tropical aboveground live

biomass on the strength of climate feedbacks is ambig-
uous. Reducing carbon flow to wood, for example,
reduces the sensitivity of carbon storage to CO2 (bL)
because wood is a long-lived pool that rapidly accumu-
lates carbon in response to stimulation of NPP. As a
result of this lower carbon storage capacity, more CO2

would accumulate in the atmosphere from a given
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trajectory of fossil fuels–subsequently increasing the
gain of the climate–carbon cycle feedback. Smaller
tropical forest carbon inventories, however, also may
reduce the temperature sensitivity of carbon storage (gL)
given that climate-driven decreases in NPP were largest
in tropical regions in C4MIP models (Friedlingstein
et al., 2006).

Existing gaps

With our analysis, we have started to build a systematic
framework for evaluating land models. Many addi-
tional datasets and comparison approaches need to be
entrained into this process. Carbon, water, and energy
budgets are intrinsically linked. Thus, to better under-
stand issues related to the surface energy budget,
satellite observations of albedo (Schaaf et al., 2002), land
surface temperature (Wan et al., 2002), net radiation, and
evapotranspiration (Cleugh et al., 2007; Mu et al., 2007)
need to be integrated within this framework. In parallel,
more in depth analysis of the eddy covariance observa-
tions are required to more fully exploit the information
content of these datasets on hourly to decadal time-
scales. To improve the representation of carbon flow
within ecosystems, comparison with other types of
measurements is necessary, including analysis of exist-
ing datasets of leaf litter decomposition (Parton et al.,
2007; Zhang et al., 2008), leaf lifespan (Reich et al., 2004),
decomposition of coarse woody debris, and turnover of
fine roots (e.g., Matamala et al., 2003), as well as soil
carbon stocks and radiocarbon estimates of soil carbon
turnover times. Regional estimates of aboveground live
biomass, including the spatial inventory of North
America developed by Blackard et al. (2008), have the

potential to constrain mortality and disturbance pro-
cesses, when combined with measurements of NPP and
allocation. A recent synthesis of nitrogen fertilization
studies across different biomes (LeBauer & Treseder,
2008) provides a means to test the sensitivity of NPP to
changes in nitrogen deposition in CN and other models
that include a nitrogen cycle.
Many of the observations described above test model

performance at the canopy scale on timescales of hours
to decades. Yet many of the models are being used to
develop scenarios of future change on timescales of
decades to centuries. This poses a challenge for model
evaluation. There is emerging recognition, for example,
that climate effects on the disturbance regime will be
equally important in shaping ecosystems responses as
the better understood (and far more extensively stu-
died) effects on canopy level processes such as photo-
synthesis and decomposition (Running, 2008; Ryan
et al., 2008). In this context, available global datasets
on burned area should be a priority for future analysis.
Few datasets on stand mortality from other forms of
disturbance, including insect outbreaks, intense
droughts, harvesting and hurricanes (e.g., Chambers
et al., 2007) exist in a form that readily allows for
comparison with global models, although work is un-
derway to extract some of this information from Land-
sat imagery for North America (Masek et al., 2008). The
paucity of spatial information on these processes slows
both model development and evaluation. Development
of these datasets and model-data comparisons focused
on these processes must be a high priority for the
ecological research community.
Another important future step will be to evaluate and

report the sensitivity of key ecosystem variables such as
GPP, NEE, and fire emissions to temperature and
moisture changes. These partial derivatives can be
estimated from existing datasets and have the advan-
tage of allowing direct comparison with output from
coupled carbon–climate models which may have biases
in the representation of the climate system. A first step
towards this approach is shown in Fig. 2 where NPP
measurements are normalized as a function of precipi-
tation.

Future directions

In past work, the development of biogeochemistry
model diagnostics has been done by individual model-
ing groups as they seek to improve the representation of
ecosystem processes within their models. At first, rela-
tively few observations from terrestrial ecosystems
were available for model development. In the 1980s
and 1990s satellite observations and field experiments
such as the First International Satellite Land Surface
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Climatology Project Field Experiment and the Boreal
Ecosystem – Atmosphere Study provided key ecosys-
tem-scale observations for land model development.
This situation is rapidly evolving with expanding net-
works of atmospheric and land surface observations,
including over 900 site-years of eddy covariance obser-
vations from FLUXNET and the development and ar-
chiving of multiple datasets from more recent field
campaigns such as the Large-Scale Biosphere – Atmo-
sphere Experiment. Model intercomparison projects
(MIPs) have used these observations, but often sample
them incompletely or using only a subset of available
data streams because of time and human resource
limitations. The traditional approach has been that
modeling teams or intercomparison groups retrieve
data sets as needed from existing data centers.
Projection of future changes in ecosystems and their

role in climate change is an urgent challenge. The
physical climate modeling groups have a successful
system where a keystone set of climate model output
from IPCC simulations is archived at the Program on
Climate Model Diagnosis and Intercomparison center
and made available to the community for analysis
(Meehl et al., 2007). We argue here that a comparable
system is urgently needed for climate–carbon modeling.
To start, an important next step is to build a common
infrastructure for climate–carbon model-data intercom-
parison that would extend across different MIPs. This
would allow for a more thorough assessment of model
uncertainties and would speed model development. It
would also stimulate greater interaction between mod-
eling and measurement communities, with the potential
for intellectual breakthroughs in both arenas. In the
context of future IPCC assessment reports, it would
present an objective framework for assessing climate-
carbon models and their projections of future changes
in the carbon cycle.
The needed infrastructure would have five elements:

(1) a series of well-defined model simulation protocols,
(2) a common set of variable declarations for model
output and data archiving, (3) a coordinated archival
system for web-accessing of observations and model
output including climate variables, (4) capability to
extract information remotely from data centers via
autonomous query, and (5) web-accessible software
enabling model-data comparison, including the genera-
tion of diagnostics and scoring systems for different
science objectives. The first three elements have been
implemented multiple times in different MIPs, but
rarely with standardization that extends across MIPs.
The fifth element would require the most human capital
– and to succeed internationally would require a well-
defined architecture and support from multiple model-
ing centers.

The advantage of such a system to modeling groups
would be that with some investment in simulation and
formatting of model output, they would have access to
a comprehensive set of diagnostics, the scope of which
would be difficult to replicate without considerable
effort. For the experimental and observational commu-
nities, the comparison process would provide a means
for evaluating data quality. Access to multiple model
output archives also would provide the measurement
community with a quantitative measure of model un-
certainty at study sites and would allow for the design
of new initiatives and networks that target uncon-
strained variables or spatial gaps.
Several components of C-LAMP described here may

serve as a proto-type for such an intercomparison system
(supporting information Fig. S6). A first step at a naming
convention for terrestrial biogeochemistry model vari-
ables follows that for physical climate models and is
available at http://www.climatemodeling.org/c-lamp/
protocol/model_output.php. A software package that
extracts model output stored with this naming conven-
tion, retrieves the corresponding observations, and then
generates a series of figures, tables, and cost functions
is shown at: http://www.climatemodeling.org/c-lamp/
results/diagnostics/CN_vs_CASA/.
Integration of land use change and dynamic vegeta-

tion within many of the C4MIP models is an important
next step for accurately simulating climate–carbon feed-
backs (Gitz & Ciais, 2004). As a focus for future model-
data intercomparison, output from a land use change
MIP may serve as a useful pilot project for developing
the software system described above. A crucial science
objective would be to understand how biophysical vs.
biogeochemical tradeoffs vary with land cover change
in different latitude zones (Bala et al., 2007; Bonan,
2008).

Conclusions

To demonstrate a new system for assessing climate–
carbon models, we compared two land biogeochemical
modules CASA0 and CN coupled to CLM using nine
different classes of observations (Table 3). Uncertainty
levels associated with the different data streams varied
considerably. We used information about measurement
and scaling uncertainty in a qualitative way to weight
the contribution of different data-model comparisons to
the overall model score. Both models underestimated
the magnitude of carbon uptake during the growing
season in northern biomes. In tropical ecosystems, both
models overestimated carbon storage in trees. Other
model biases included delayed seasonal peak leaf area,
too high NPP estimates in CASA0, and too low predic-
tions of leaf area and fire emissions by CN. The models
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captured some of the interannual variability in the land-
atmosphere net CO2 flux during 1988–2004 based on
comparison with TRANSCOM atmospheric CO2 inver-
sion estimates.
The scoring system we developed attempted to gauge

the relevance of different observations for improving
model performance with respect to at least two diver-
ging classes of carbon–climate model objectives. These
were (1) assessing the strength of the feedback between
the carbon cycle and climate system (and thus future
emissions requirements for greenhouse gas stabiliza-
tion) and (2) assessing climate change impacts on
ecosystem function.
The evaluation process provides a means for the

broader scientific community to gain understanding of
the strengths and weaknesses of biogeochemical algo-
rithms. It also provides a benchmark for prioritizing
future model improvement and gauging model projec-
tions. We propose that a critical next step in this process
is for the international community to develop common
software and variable protocols that enable data com-
parison modules to be shared among different MIPs
and data centers. This would also allow for more
sophisticated model diagnostics tools that could be
used to speed model development and to identify data
gaps. It would also provide a new approach for critical
assessment of observations in the context of other data
streams and model results.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. Conceptual diagram of observations available for testing carbon-climate models. Ice core measurements of the

atmospheric CO2 record provide constraints on the sum of ocean and land carbon fluxes when this information is combined

with fossil fuel inventory time series. Isotope measurements from ice cores allow for similar constraints but including gross

exchanges and reservoir turnover times. Contemporary atmospheric CO2 observations from flask networks (NOAA GMD) and

satellites (e.g., the Orbiting Carbon Observatory) provide information about the seasonal dynamics of net ecosystem exchange and

continental-scale fluxes on timescales of years to decades. Biomass inventories are sparse but crucial for constraining allocation, tree

mortality, and the mass of carbon vulnerable to deforestation. Satellite observations of leaf area index and other ecosystem variables

provide global coverage at a high temporal resolution for a period of almost three decades, although cross-platform calibrations

introduce considerable uncertainty. Free-Air Carbon dioxide Enrichment (FACE) experiments have quantified elevated CO2 effects on

ecosystem processes in temperate ecosystems, but less information exists for tropical forest and boreal biomes that account for most

of terrestrial GPP and aboveground carbon storage.

Figure S2.Comparison of net primary production for a) CASA’ and b) CN models with class A observations from the Ecosystem

Model Data Intercomparison Initiative (EMDI). The same comparison for class B observations is shown in c) and d).

Figure S3. Zonal mean net primary production from MODIS satellite-based estimates compared with the models. We used the

MOD17A3 collection 4.5 product from MODIS for this comparison (Heinsch et al., 2003). We show the 200-2004 zonal mean and

compare this model experiment 1.4 during the same period.

Figure S4. The zonal mean response of NPP to a step change in atmospheric CO2 following the FACE experimental protocol. The

model NPP response was averaged over the first 5 years after enrichment.

Figure S5. a) The global net land flux from experiment 1.4. This simulation includes climate variability and time-varying atmospheric

CO2 and nitrogen deposition. Climate for a 25-year span (1948-1972) was cycled until 1948, the beginning of the NCAR/NCEP

reanalysis period. b) The difference in flux between experiments 1.4 and the climate only simulation (experiment 1.3). This panel

shows the fluxes caused solely from the atmospheric CO2 and nitrogen deposition forcing. c) The land flux driven solely by climate

(experiment 1.3) during 1973-2004.

Figure S6. Conceptual diagram showing how a climate ecosystem data-model intercomparison system (CEDMIS) might function in

the context of existing data centers and model archiving capabilities. CEDMIS would extract information from archived data sets and

models to generate intercomparison diagnostics, using a series of scoring, visualization, and data extraction software tools. A key

goal would be make the intercomparison diagnostics into modules that could be reused in multiple model-intercomparison projects

(MIPs) in an open source format. This system could be used in a stand alone mode for individual model development or as the basis

for community wide MIPs. Key data sources would include the Carbon Dioxide Information and Analysis Center (CDIAC), NASA’s

Oak Ridge National Lab (ORNL) and Land Processes (LP) Distributed Active Archiving Centers (DAACs), NOAA’s Global

Monitoring Division trace gas archives (including retrieved fluxes by means of atmospheric inversions such as TRANSCOM and

CarbonTracker), and NSF’s Long Term Ecological Research (LTER).
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Any queries (other than missing material) should be directed to the corresponding author for the article.
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