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Abstract

Remotely-sensed normalized difference vegetation index (NDVI) from the NOAA Land Pathfinder
dataset is used to estimate biophysical land surface parameters for the years 1983 to 1993. 10-day
NDVI composites with a spatial resolution of 0.1˚ by 0.1˚ are analyzed for the European domain and
error sources in the dataset are discussed. A Fourier adjustment procedure developed by Sellers et al.
(1994, 1996b) and Los (1998) allows to separate reliable NDVI values from interferences, so that the
vegetation signal can be extracted from an error-contaminated time-series. This procedure is
reviewed and tested for its effectiveness on idealized time-series. The Fourier adjustment technique
is then applied to the Land Pathfinder NDVI dataset and special cases are presented, where the origi-
nal algorithm does not hold. An enhanced Fourier adjustment procedure is developed by taking these
special cases in consideration. An 11-year European Fourier-Adjusted and Interpolated NDVI
dataset (EFAI-NDVI) is processed and the following associated biophysical land surface parameters
are estimated with simple relationships: Fraction of absorbed Photosynthetically Active Radiation
(FPAR), Leaf Area Index (LAI), vegetation cover fraction, greenness fraction and roughness length.

Results show, that the enhanced Fourier adjustment algorithm performs well for most areas within
the European domain. The correction scheme is most effective where suspect data are supposed to
occur due to atmospheric interferences. Certain inconsistencies need further evaluation: Vegetation
types with a large seasonality occurring mainly at high latitudes lead to overestimated NDVI values
when sudden changes in vegetation activity occur. Positive outliers during time of low vegetation
activity could only be partly removed, what needs further examination. The spatial variability of the
EFAI-NDVI is detected even at small scales in the examined dataset, which encourages the use of
high resolution vegetation datasets in Soil-Vegetation-Atmosphere Transfer Schemes (SVATS). The
correct spatial and temporal accuracy of NDVI is important for the estimation of the associated land
surface properties. Future research will involve the use of these properties in sensitivity studies with
coupled biosphere-atmosphere models. A better representation and understanding of land surface
processes in regional climate modelling is expected as a future prospect.
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1. Introduction

During the past decades, the understanding of human-induced and natural variations in the global cli-
mate has become very important. The climate system consists of several components interacting
with each other: the atmosphere, the hydrosphere, the cryosphere, the lithosphere and the biosphere.
Especially the biosphere is important in its ability to sustain life, in regulating the land surface water
and carbon balance and in determining the radiative energy fluxes. Biosphere properties are strongly
dependent on the temporal dynamics and spatial distribution of land surface vegetation. Vegetation
therefore indirectly drives physical and chemical processes in the atmosphere by altering the trans-
fers of sensible heat, water and momentum between the ground surface and the planetary boundary
layer. The vegetation physiology itself is very sensitive to climate forcings and therefore provides
several feedback mechanisms between the land surface and the atmosphere (Bounoua et al. 1999).

Biosphere properties need to be considered in climate simulations to account for the interactions
mentioned above. The formulation of these land surface parameterizations (LSPs) has evolved in the
last two decades from simple prescriptions of surface parameters (BATS of Dickinson 1984, SiB of
Sellers et al. 1986) to very sophisticated physical and biochemical models (Sellers et al. 1996a), that
include advances in plant physiology research made during the 1980s and 1990s (Farquhar et al.
1980, Collatz et al. 1998). These advanced biosphere models are coupled with atmospheric and
ocean general circulation models (AGCMs) and regional circulation models (RCMs), such that cli-
matic responses can be simulated with altered global or regional change scenarios (Sellers et al.
1997, Heck 1999, Pielke et al. 1999). Los et al. (2000) shows that changes in the global vegetation
activity strongly affect the land surface hydrology and also produce a significant change in the land
surface energy balance.

Table 1.1: Sensitivity of land surface parameters to increased FPAR (Los et al. 2000).

Driving parameter 30˚S-30˚N 40˚N-70˚N Global
Δ FPAR (-) 0.148 0.183 0.157

Affected climate parameters 30˚S-30˚N 40˚N-70˚N Global
Δ Assimilation (mol/m2/yr) 33.7 26 28.5
Δ Precipitation (mm/yr) 11.1 33.7 19.1
Δ Evapotranspiration (mm/yr) 50.9 48.8 46.1
Δ Soil water (mm/yr) -59.7 -27.7 -41.8
Δ Soil latent heat flux (W/m2) -8.11 -4.28 -6.1
Δ Soil sensible heat flux (W/m2) -9.03 -6.41 -7.02
Δ Canopy latent heat flux (W/m2) 12.2 8.16 9.77
Δ Canopy sensible heat flux (W/m2) 4.81 2.51 3.52
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Increased FPAR1 leads to an increased carbon assimilation, which enhances the transpiration and
indirectly results in an increased precipitation rate, as seen in Table 1.1. Soil fluxes decrease, when
FPAR increases. A more differentiated view is provided by Heck (1999) with a sensitivity experi-
ment of the European climate with altered continental-scale vegetation. Northern Europe soil-atmo-
sphere fluxes respond with the same sign to increased vegetation as shown in Table 1.1. In the
Mediterranean region increased vegetation leads to moister and cooler spring but are followed by a
warmer and drier summer with very low soil moisture available. This study shows that regional cli-
mate modeling provides a better understanding of local climate response to continental-scale vegeta-
tion changes.

The current third generation SVATS (SiB2 by Sellers et al. 1996a, SiB 2.5 by Vidale, personal
communication) formulate biosphere processes from time varying fields of vegetation, static land
cover types and soil properties. Vegetation data is not collected very frequently and with a large area
coverage by ground measurements as this is done for other climate data like rainfall and temperature.
This fact poses a serious limitation to the estimation of biospheric processes in climate simulations.
Several methods have been developed to obtain vegetation data from satellite observations. These
methods are based on the unique spectral behavior of vegetation: leaf material absorbs radiation in
the visible and strongly reflects radiation in the near-infrared part of the the solar spectrum. The nor-
malized difference vegetation index reflects this response: , where

is the visible land surface reflectance and is the near-infrared land surface reflectance
(Tucker and Sellers 1986). During the past two decades polar orbiting satellites from the National
Oceanic and Atmospheric Administration (NOAA) have been collecting data in these spectral bands
using the Advanced Very High Resolution Radiometer (AVHRR) instrument. These measurements
provide high temporal and spatial coverage to access vegetation behavior of regional and global
scales for climate studies.

Although potential use of satellite remote sensing for the estimation of land surface properties
looks very promising, spatial and temporal consistency of these datasets needs to be carefully
reviewed. Serious compromises are found due to sensor degradation, clouds, viewing geometry, reg-
istration errors and atmospheric effects (Holben 1986, Goward et al. 1991, Gutman and Ignatov
1995). Many approaches have been undertaken to generate corrected global and regional vegetation
datasets for use in land surface parameterizations, such as the NOAA Global Vegetation Index (GVI)
dataset (Goward et al. 1993 and 1994), the NOAA Land Pathfinder dataset (James and Kalluri 1994)
and the Global Inventory Monitoring and Modelling System (GIMMS) dataset (Los et al. 1994). The
estimation of land surface properties from the 1˚ by 1˚ global FASIR corrected GIMMS NDVI
dataset has been successfully performed by Sellers et al. (1996a) and validations were carried out at
field experiments (FIFE: Sellers et al. 1988, OTTER: Angelici et al. 1991, BOREAS: Hall et al.
1993).

The intention of the present thesis was to use existing vegetation datasets for the estimation of
land surface properties at regional scale. They will improve the land surface parameterization
scheme SiB2.5, which is in preparation for being coupled to the new ETH Regional Climate Model
(CHRM by Lüthi et al. 1997). At the current state, no multi-year regional vegetation dataset for the
European domain is available for climatic use. The GIMMS FASIR-NDVI (Los et al. 2000) will be
extended for 0.25˚ grid resolution and monthly time steps earliest until summer 2002.

1. FPAR: Fraction of Photosynthetically Active Radiation absorbed by the green vegetation, part of the solar
spectrum, which is used for the photosynthetic carbon assimilation process. FPAR is used to estimate the net
primary production of land surface vegetation (See section 5.4).

NDVI ρN ρV–( ) ρN ρV+( )⁄=
ρV ρN
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The present work therefore focuses on the generation of a regional European vegetation dataset
with associated land surface properties for use in coupled biosphere-atmosphere circulation models
like SiB2.5-CHRM. Higher spatial resolutions are needed for a proper estimation of the regional
land surface variability in this context. The NOAA AVHRR Pathfinder NDVI dataset, in its maxi-
mum 8km1 spatial resolution, was selected for this purpose. This dataset is continuously available
from 1981 to the present and therefore allows the research on inter-annual vegetation variabilities
and the estimation of multi-year trends. The temporal scale is set from 1983 until 1993 by selecting
10-day intervals, such that short time features like leaf-out in spring is detected more efficiently than
with monthly composites used by Los et al. (2000). This dataset is perfectly scaled for regional cli-
mate modelling, but it is heavily contaminated with data dropouts and outliers induced to its tempo-
ral and spatial characteristics2.

Sellers et al. (1996b) and Los (1998) have shown that it is possible to extract the proper vegetation
signal from error-contaminated time-series with a Fourier curve fitting, when the following assump-
tions are made:

A-1 Vegetation activity varies continuously over time and shows a seasonal variability.
A-2 Errors resulting from clouds and atmospheric contamination tend to decrease the NDVI

signal

Considering these, cloud interferences, data dropouts and atmospheric effects can be removed by
trusting the high values within the time-series and rejecting (low) outliers. In this study the Fourier
adjustment technique by Los et al. (1994), Sellers et al. (1996b) and Los (1998) is revised and care-
fully adapted to the highly error-contaminated 0.1˚ by 0.1˚ Land Pathfinder NDVI dataset. Several
extracted cases show that the original Fourier adjustment technique does not hold well for the present
dataset. Positive outliers are observed, which is in disagreement with the second assumption, A-2.
By taking into account these cases and by modifying the weighting scheme in the Fourier adjust-
ment, a consistent multi-year NDVI dataset for the European domain is the main result of the present
work.

To examine the quality of the created vegetation dataset, it is compared to the lower resolution
ISLSCP II initiative (International Satellite Land Surface Climatology Project II: Los et al. 2000)
data collection. General trends in the NDVI are reproduced well, although dataset properties and pro-
cessing steps were quite different for the two datasets. Differences in the NDVI amplitude and slight
phase shifts are observed between the two products, what needs further examination. The vegetation
product shows inter-annual variability in the seasonal amplitude and in the length of the growing sea-
son, what looks promising for its use in sensitivity experiments in regional climate scenarios. A pos-
itive NDVI trend of 1.4% per year is detected in the examined time period from 1983 to 1993, what
can relate to an observed increase of the net primary production in northern hemisphere (Myneni et
al. 1997). However, such decadal trends from satellite remote sensing are subject to measurement
inconsistencies with the same magnitude caused by successive replacement of the satellites (Hurrel
and Trenberth 1997). In contrast, vegetation-type dependent seasonality shows high amplitude dif-
ferences as observed in the presented vegetation dataset and matches well with vegetation type char-
acteristics described by Justice et al. (1985), Moulin et al. (1997) and Fries et al. (1998).

1. 8km spatial resolution at nadir corresponds to approximately an 0.1˚ lat/lon grid cell at 45˚ latitude.

2. Having datasets spatially and temporally subsampled reduces errors induced by measurement difficulties
(Section 2.2) and also reduces high frequency components within the dataset.
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By combining the time- and space-dependent vegetation (NDVI) product with land cover and soil
type maps, land surface properties can be assigned or calculated with simple relationships and inter-
mediate models1 (see Figure 1.1). In the present work, a remotely-sensed land cover type map by
DeFries et al. (1998) is used to estimate vegetation-type dependent properties and the FAO soil type
map (FAO, 1978) is applied to have soil properties assigned.

Time-dependent fields like the fraction of absorbed photosynthetically active radiation (FPAR),
the total leaf area index (LT), vegetation cover fraction (fV), the greenness fraction (N) and roughness
length (z0) are calculated using a methodology by Los (1998) and Los et al. (2000) and are presented
without further examination of the products in the appendix C of this work.

Figure 1.1: The calculation of land surface properties combines time-dependent NDVI-fields with
static land cover and soil type maps through simple relationships (presented in section 5.5). The accu-
racy of the NDVI data is important, since all land surface properties are first order dependent on NDVI.
The present work focuses on the generation of the EFAI-NDVI from the NOAA Pathfinder NDVI dataset.
Resulting land surface properties, calculated with the SiB-preprocessor “MAPPER”, are presented in
the appendix C.

1. There are alternatives to the NDVI-based land surface parameters described in this work: A multitude of spe-
cialized vegetation classes, which all have their own phenology curves. Example is the USGS vegetation
classification for the USA with over 270 classes. A practical problem rises from the fact, that no consistent
parameters are available for most of these classes.

Correction scheme
Enhanced Fourier Adjustment

and Interpolation of missing data
(EFAI correction)

NOAA Land Pathfinder
NDVI dataset

Time- and space-dependent fields
FPAR, LT, fV, N, z0

Land cover type m
ap

vegetation properties

Soil-type m
ap

Soil properties

EFAI-NDVI

MAPPER
Generation of land surface parameters for use in the Simple Biosphere

time-dependent properties static properties
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The remaining chapters are arranged as follows: chapter 2 outlines the theory behind remote sens-
ing of vegetation from space and discusses the associated difficulties and available solutions. The
Fourier adjustment technique is presented. In chapter 3 the Fourier adjustment technique is applied
to generate an 11-year NDVI dataset. Various special cases are evaluated and modifications to the
original algorithm are discussed and applied. In chapter 4 the resulting product is compared to the
few available sources and its usability is discussed. Future updates in the generation of vegetation
datasets are outlined. In Chapter 5 the calculation of land surface parameters, resulting from the gen-
erated EFAI-NDVI, is outlined. Chapter 5 then focuses on collecting and reclassifying the land cover
and soil type maps from public available sources to fit the used calculation schemes. The program
MAPPER is then used to produce European fields of time- and space-varying land surface parame-
ters. Chapter 6 provides final summarized thoughts and a future outlook from the present work. The
appendix then shows tables and maps used and presents the land surface fields calculated in chapters
3 and 5.
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2. Satellite Remote Sensing of Vegetation

An overview of vegetation monitoring with remotely-sensed data from the NOAA Advanced Very
High Resolution Radiometer (AVHRR) is provided in this chapter. Spectral absorption characteris-
tics of plants allow to effectively estimate their spatial and temporal distribution from satellite sen-
sors with empirical relationships. This technique provides global coverage for short time intervals at
reasonable resolution, but data is subject to several external interferences and systematic measure-
ment errors.

These inconsistencies in remotely-sensed vegetation datasets are discussed for the NOAA Land
Pathfinder dataset used in this work. The magnitude of errors within the dataset can be significantly
reduced with an adjustment procedure that bases on Fourier series with least squares fitting. Two
assumptions are made to distinguish unreliable data from the vegetation signal, what serves to recon-
struct time-series in remotely-sensed vegetation data. This adjustment procedure is very effective at
simulated time-series and shows better performance when the temporal resolution of the time-series
is increased.

2.1 Spectral Properties of Land Surface Vegetation

There is currently much interest in the quantitative characterization of temporal and spatial vegeta-
tion patterns with remotely-sensed data for the study of earth science and global change. During the
past two decades, various techniques and algorithms have been evaluated to create accurate datasets
with global as well as regional scale. They all base on the discontinuity of the spectral absorption
curve for green vegetation around 0.7 µm (Gutman 1991). Light is absorbed strongly within the
green leaves by the plant pigments present. Most of this absorption is due to chlorophyll a and chlo-
rophyll b as well as the carotenoids in different spectral bands (Figure 2.1): Most of the photosyn-
thetically activity is found between 0.4 - 0.5 µm (blue) and 0.62 - 0.7 µm (red). The range from 0.5 -
0.62 µm (green, yellow) has reduced chlorophyll absorption and results in the green appearance of
vegetation to our eyes. The spectral band 0.74 - 1.1 µm (infrared) is highly reflected by the plant
leaves, especially for dense canopies (Figure 2.2). Higher wavelengths above 1.1 µm show an
increasing absorption curve by the plants liquid water as described by Tucker and Sellers (1986).

Figure 2.1: Absorption spectrum of isolated chlorophyll and carotenoid species. The colors associated
with the various wavelengths are indicated above the graph. (Vermaas 1998)



11

The spectral characteristics of green leaves can be used to determine the amount of photosynthetic
active biomass by combining different wavelengths to vegetation indices. The information contained
in a single spectral band is usually insufficient to characterize vegetation status, since atmospheric
constituents and soil reflectances can have similar spectral responses at certain wavelengths (Qi et al.
1994).
Two remotely-sensed vegetation indices are in common use, defined as: (Sellers et al. 1996b)

(2.1)

(2.2)

with
SR = Simple Ratio

NDVI = Normalized Difference Vegetation Index
= reflectances or radiances, for visible (VIS) and near-infrared (NIR) wavelength

High photosynthetic activity will result as a low reflectance in the visible band and high
response in the near-infrared wavelengths . Although leaf spectra vary (Figure 2.2), the large dif-
ferences between red and infrared reflectance occur for all photosynthetically active leaves and this
allows to distinguish leaves from other remotely-sensed objects, such as water, soils and clouds.
Both, SR and NDVI, show a high response to green vegetation and have higher values at increasing
photosynthetic activity. The NDVI value generally varies between 0 (sparse vegetation) and 0.8 (very
dense vegetation), where negative values represent non-vegetated surfaces like snow and water, but
also occur due to cloud contamination. Compared to the reflectance of leaves, the reflectance of soil
in the infrared doesn’t differ much from its visible response (Los 1998) and shows a linear relation-
ship. Nevertheless, spectral response of the soil vary with its type and composition (% organic mat-
ter, % saturation, amount of iron) and can have a significant contribution to the NDVI signal (Qi et
al. 1994). As measurements of the Sahara desert revealed, remotely-sensed vegetation indices can
vary up to 0.1 NDVI with a standard deviation of 0.02 NDVI (Los 1998) - variations, that are attrib-
uted to soil effects.

Figure 2.2: Absorption (reflectance) curves of different vegetation types in relation to wavelength. Each
curve has been offset by 0.05 from the one below. Data was extracted from airborne AVIRIS measure-
ments. (Clark et al. 1995, USGS)

Several vegetation indices have been proposed to be less sensitive to the soil background effects,
such as the Soil-Adjusted Vegetation Index SAVI (Huete and Tucker 1991). The SAVI applies a soil

SR
ρN
ρV
------=

NDVI
ρN ρV–
ρN ρV+-------------------=

ρV ρN,

ρV
ρN
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adjustment factor L to the visible and near-infrared reflectances to account for the soil effects. As the
soil background effects only are of significance in sparse vegetated areas, L should vary inversely
with the amount of vegetation present (the fraction of vegetation cover). Qi et al. (1994) developed
the Modified SAVI (MSAVI), where the vegetation signal to soil noise ratio is significantly
enhanced.

2.2 Vegetation Monitoring with the NOAA AVHRR Sensor

As described in section 2.1, vegetation activity can be measured by taking the ratio between near-
infrared and the visible (red) wavelengths of the radiation reflected at the earth surface. These spec-
tral bands can be remotely-sensed by ground equipment, airplane carried sensors and satellites. Dif-
ferent satellites have been equipped with passive scanners, which collect data at these spectral bands.
Since 1979 the Advanced Very High Resolution Radiometer (AVHRR) onboard the National Oce-
anic and Atmospheric Administration (NOAA) series of Polar orbiting Operational Environmental
Satellites (POES) is collecting data over the entire globe at 4km1 resolution twice daily in five differ-
ent spectral bands (Table 2.1).

This frequent global coverage makes AVHRR data suitable for applications, that need high tem-
poral resolution and coverage over large areas. Regional and local vegetation-studies with higher
spatial resolutions will rely on remotely-sensed data from Landsat or SPOT (typically acquired only
a few times a year)  as well as on aerial photography  (Los 1998).

For studies of broad scale land surface, satellite remote sensing with the AVHRR instrument has
various advantages, like high revisit frequency and very large coverage, which also result in low spa-
tial resolution (Robinson 1996). Furthermore the AVHRR Global Area Coverage (GAC) data is con-
tinuously available since 1981, making it a very suitable source for inter-annual and multi-year
climate studies in the biosphere field (Prince and Goward 1996).

Nevertheless, vegetation characteristics from satellite-acquired surface data have to be analyzed
carefully and need corrections for the various error sources resulting from this technique. Much
research has been done in this field during the last two decades (Tucker and Matson 1985, Holben
1986, Gutman and Ignatov 1995, Cihlar et al. 1994) and only the main results will be discussed here
as an overview.

1. The instantaneous field-of-view (IFOV) of 1.4 milliradians provides a ground resolution of approximately
1.1 km at the satellite nadir from the orbit altitude of 833 km. The data are derived from an onboard sample
averaging to 4-km resolution, since off-nadir pixels will cover larger surface areas..

Table 2.1: NOAA AVHRR instrument channels

Channel Wavelength [µm] Description Detection of
1 0.58-0.68 Visible, red Clouds, Vegetation, pollution
2 0.73-1.10 Near Infrared Vegetation
3 3.55-3.93 Shortwave Infrared Fires, water clouds, fog, SST
4 10.3-11.3 Longwave Infrared Emmitted radiation, clouds
5 11.5-12.5 Longwave Infrared Emmitted radiation, moisture
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The effects to be considered when working with AVHRR data fall into two categories: atmo-
spheric and geometric. The two principal atmospheric effects are 1) decrease in transmissivity due to
absorption (ozone, water vapor) and scattering (aerosols, molecules) present in the atmosphere
(Cihlar et al. 1997; Sellers et al. 1996b) and 2) cloud cover, which can seriously affect the usability
of satellite sensed surface-data in certain regions like Amazonia (Holben 1986). The key geometric
effects are the bidirectional reflectance distribution function (BRDF), which is a function of the rela-
tive positions of the satellite, the sun and the remotely-sensed surface and is also dependent of the
surface properties as well as of the used wavelength (Cihlar et al. 1994). The knowledge of the
BRDF and its effects on the measured surface variable is essential for each remotely-sensed dataset,
since albedo and surface radiant fluxes are highly sensitive to incident and reflected radiation proper-
ties. This bidirectional reflectance distribution function is usually quantified by semi-empirical mod-
els to correct satellite data (Gutman 1991, Cihlar et al. 1994). It is not well understood and hasn’t
been implemented in most of the currently avaliable remotely-sensed vegetation datasets.

The NOAA POES satellites have an afternoon equatorial crossing time between 14:30 and 17:30.
At this time, convective cloud systems over land surfaces have evolved and cover a large part of the
ground surface. This poses a heavy limitation to acquire vegetation data in tropical regions. (Prince
and Goward 1996)

Instruments also show certain degradations over time, that can be described with empirical func-
tions through in-orbit calibrations (e.g. calibration at time-invariant sites). Orbital drift leads to a
gradual shift in the equatorial crossing time and successive replacements of the satellites introduce
non-steady transitions in time-series. These effects need to be considered, when several years of
AVHRR data are processed.

Combining several AVHRR bands in ratios (like NDVI, SR) reduces atmospheric and geometric
effects (Holben 1986). Generating spatial and/or temporal composites has the same effect, whereas
several algorithms can be applied.

2.3 The Pathfinder NDVI Dataset

The Pathfinder Program, initiated by NOAA and NASA, produces long-term datasets processed in a
consistent manner for global change research. The data covers the period from July 1981 through the
present. It is available to the public and provides daily and 10-day composite GAC NDVI data with a
resolution of 8x8km.

The Pathfinder datasets have been corrected for the following errors and effects:
(James and Kalluri 1994)

• Sensor degradation
• Atmospheric effects (Rayleigh scattering and Ozone)
• Surface topography
• Solar zenith angle and azimuth
• Cloud contamination

Each scanned pixel is navigated through an orbital model and atmospheric as well as bidirectional
reflectance distribution effects are calculated considering surface topography and the relative sun-tar-
get-scanner positions. Clouds are detected by the thermal channel (AVHRR channel 4) and flagged
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to missing data. To produce the 10-day composite data and reduce cloud contaminations and bad
scans, the maximum-value composite (MVC) algorithm is used (Holben 1986).

The use of the AVHRR Pathfinder dataset has several advantages, like its continuous and global
coverage, as well as being a public available source. Several studies have discussed the accuracy of
this dataset for climatic change research (Anyamba and Eastman 1996, Potter and Brooks 1998, Los
et al. 2000), for environmental monitoring (Belward 1992), crop yield estimation (Quarmby et al.
1993) and for land cover classification (DeFries et al. 1998).

It was shown, that the atmospheric correction scheme used by the Pathfinder project science team
only tend to reduce the NDVI linearly (Prince and Goward 1996). No corrections for water vapor and
aerosols are performed at all in the NOAA Pathfinder dataset. The maximum-value composite algo-
rithm favors off-nadir viewing angles, which results in an overall quality decrease of the NDVI val-
ues (Gutman 1991). Other compositing techniques like the “best index slope extraction filtering”
(Moulin et al. 1997) and “maximum-value interpolated time-series” (Taddei 1997) have been dis-
cussed to solve MVC-induced errors. Deviations of the NDVI values due to soil background reflec-
tances (See section 2.2) are not corrected in the Pathfinder dataset.

2.4 Analysis of Pathfinder NDVI Time-Series

The original Pathfinder NDVI data contain useful information about the temporal and spatial distri-
bution of vegetation. Figure 2.3 shows two examples of one year NDVI timeseries. The above dis-
cussed relationship between vegetation activity and spectral vegetation indices is apparent: the
observed Sahara site (left) has no vegetation cover throughout the year. It is well reproduced by a low
NDVI curve with very little background noise. A deciduous forest in Norway (right) is expected to
have a significant seasonal vegetation trend and a very late growing season - these features are obvi-
ously reproduced well by the NDVI time-series in a qualitative manner.

Figure 2.3: Desert in north Africa shows a constant and low NDVI time-signal throughout the year
(left, Algerian desert site at 34˚N, time-series from 1987), whereas the northern parts of Europe usually
have a high seasonality in the vegetation cycle (right, Norway boreal forest site at 65˚N, time-series
from 1993). Both graphs show time-series for a single pixel.

However, closer analysis of Pathfinder NDVI time-series reveals, that they need further process-
ing to be useful for quantitatively represent the vegetation activity. There are several problems,
which can be discovered in the Pathfinder dataset and need to be addressed:
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• NDVI series do not vary smoothly with time: high frequency components and missing data are a
common phenomena (Figure 2.4 left).

• Positive outliers occur in almost all (exept in non-desert) time-series (Figure 2.5)
• High latitudes have extreme solar zenith angles or receive no solar irradiation at all during sev-

eral months in the winter season. No visible radiation will be measured at these locations for up
to six months per year, which leads to missing NDVI data during those months (Figure 2.4 right,
Figure 2.6 left).

• Solar illumination, orbital geometry and communication errors have not been corrected success-
fully in all the datasets. Scan stripes from the satellite’s swath-path are visible in certain datasets
(Figure 2.6 right).

Figure 2.4: High noise observerd in the NOAA Land Pathfinder dataset (left: central Scotland time-
series from 1993) and data dropout in winter time at high latitudes (right: northern Sweden time-series
from 1993). Both graphs show time-series for one single pixel.

Figure 2.5: No clear vegetation cycle visible. Both graphs illustrate remote sensing errors that have to
be corrected prior to use the Pathfinder dataset for deriving biophysical land surface variables. (left:
Iceland time-series from 1983, right: Finland time-series from 1983). Both graphs show time-series for
one single pixel.
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Figure 2.6: No remote sensing of vegetation is possible in winter at high latitudes (left: 1985 January
21-31 composite), what leads to data dropouts during various months. Visually inspecting the Path-
finder datasets shows artifacts like visible swath-paths of the AVHRR sensor (right: 1985 February 1-
10 composite).
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2.5 Fourier Adjustment of NDVI Time-Series

2.5.1 Introduction

Two assumptions can be made for estimating the quality of a specific NDVI time-series and to apply
corrections for the error sources. These assumptions form the basis and main justification for the dis-
cussed algorithms in this chapter and their application in chapter 3 to effectively estimate land sur-
face vegetation activity by remote sensing of their spectral absorption characteristics:

A-1 The vegetation follows a truncated seasonal cycle (Moulin et al. 1991) and NDVI values
will vary smoothly with time (Sellers et al. 1996b).

A-2 Outliers in NDVI time-series are the result of either cloud cover or sudden changes in
atmospheric constituents. These effects tend to decrease NDVI values (Holben 1986, Los
1998).1

The objective of the proceeding sections 2.5.2 to 2.5.5 is to describe an algorithm which can suc-
cessfully reduce errors, data dropouts and other temporal inconsistencies in the Pathfinder NDVI
dataset. To achieve this aim the two essential assumptions A-1 and A-2 from above are included in a
weighted least squares fit of partial Fourier series.

2.5.2 Fourier series

A Fourier series is suitable to represent the seasonal character of vegetation, because vegetation usu-
ally shows a periodic cycle, associated with the seasonal varying environmental conditions. Fourier
series arise from the task of representing such a given periodic function by discrete trigonometric
series. A Fourier series can be described as follows (partial sum Fourier series; Kreyszig 1988):

(2.3)

with

1. Clouds have already been masked out in the original Pathfinder NDVI dataset. However, not all cloud con-
tamination could be removed with the algorithm, which bases on cloud detection with the thermal infrared
AVHRR channel (cirrus and cumulus clouds) and the visible channel (warm, low-level clouds). Clouds and
other sources of atmospheric contamination tend to have higher reflections in the visible wavelength and will
generally decrease the NDVI values. This assumption also justifies the generation of maximum-value com-
posites (Holben 1986) or maximum-value interpolated composites (Taddei 1997), which implies trusting in
high NDVI values when looking at time-series. A few exceptions to this assumption exist, but their effects
are an order of magnitude smaller of the general case (Los 1998).
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where
a, b = Fourier coefficients

n = number of points in the sequence
i = phase; ranges from 1 to n

m = number of harmonics

With increasing m, higher harmonics are considered in the Fourier series and short term irregular-
ities (resulting in high frequencies) will be successfully approximated by the series. To represent the
seasonal vegetation variation, m=3 was selected1 (Sellers et al. 1996b). The application of Fourier
series to one year of monthly composites results in 12 data points, hence n=12.2

To have a Fourier curve fitted through the measured dataset, the Fourier coefficients have to be
calculated. A robust least-squares method is used here to eliminate data, which deviates strongly
from the general trend (Weisberg 1985). Sellers et al. (1996b) and Los (1998) have modified the
robust least-squares method to take into account the assumption A-2 (see section 2.5.1): errors in the
remotely-sensed NDVI mainly result in decreased values.

2.5.3 Fourier adjustment algorithm

The original Fourier adjustment algorithm for NDVI time series was developed by Sellers et al.
(1996b), using Global Inventory, Modeling, and Monitoring System (GIMMS) monthly composite
global NDVI with a spatial resolution of 1˚ by 1˚. The Fourier adjustment algorithm will be outlined
here shortly, to provide a background for its application in the third chapter. A complete description
can be found in Sellers et al. (1996b) and Los (1998).

2.5.4 First Fourier adjustment

Using the least-squares method (Weisberg 1985), the Fourier constants are solved for a Fourier
series with the degree m-1:

(2.4)

where  are the observed data,

1. If more terms are taken into consideration, more complex time-series can be approximated by partial Fourier
series. m=1 will show a constant function, where m=2 results in a function able to represent annual features.
Only Fourier series with m=3 or higher account for halfperiodic features (See Kreyszig 1988).

2. The correction is limited to less than a sequence of outliers of n/2m-1 data points in a row. For m=3, n=12 no
more than 3 successive outliers will be corrected.

c j

FT F⋅( ) c⋅ FT Y⋅=

Y
Y 1

…
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 is the Fourier matrix

and  are the Fourier constants to be solved for and applied to the Fourier series

Fitting a Fourier curve with this generalized least squares algorithm means, that the sum of the
squares of the distances between the fitted and the given data points is minimum (Kreyszig 1988).

2.5.5 Apply a second weighted Fourier adjustment

A second Fourier curve fit is applied through the data, now including the calculated weights :

(2.5)

where  are the weighted observed data

and

is the weighted Fourier matrix.

2.5.6 Weighting the Fourier fit

The weights  are calculated according to the distance of the measured data from the fitted curve:

        if (2.6)
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and

where
U =
M =
k = 2
r = M / 20

The errors resulting from the first generalized least squares fit have different variances for each fit-
ted point. Using weights , certain variances can be taken into account more than others. Cases
with high weights will have small variances and are therefore be more important to the regression
problem (Weisberg 1985). The minimization of the squared differences used in the first generalized
least squares fit thus changes, eliminating the influence of bad data from the regression and interpo-
lating with the reliable points. High weights are applied to all data points lying on, or above the first
fitted Fourier curve, where low weights are assigned to the less credible data with low NDVI values
(Los 1998).

2.6 Effectiveness of the Fourier Adjustment Technique

The Fourier adjustment procedure discussed above bases on the estimation of a time-series by curve-
fitting discrete sample points with least squares and at the same time excluding erroneous points by
trusting the higher observed values. Testing of this theory is performed in this section. A simulated
(theoretical) vegetation curve is created and discretized with 12 points (Figure 2.7 left, solid line) in
comparison to 36 points (Figure 2.7 right, solid line).

Figure 2.7: Fitting a theoretical vegetation time-series when 12 discrete data points are available (left)
and when a higher temporal resolution of 36 values is offered (right). A linear regression of the original
and fitted curve results in a better fit (R2=0.995) of the finer scaled data than the coarse time-series
(R2=0.989). The original time-series is shown as solid line and the Fourier adjusted curve is dashed.

0 W i 1= 1≤ ≤

0 W i n= 1≤ ≤

Y Ŷ–( ) M⁄
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Figure 2.7 shows that there is a slight improvement in Fourier adjusting 36 points over 12 points.
A linear correlation between the original curve and the Fourier adjusted curve show an R2 of 0.995
for 36 discrete points, whereas an R2 of 0.989 results, when 12 points are considered.

As soon as errorneous data is included in the simulated time-series, the power of the weighting
scheme can be evaluated. Figure 2.8 was created by assuming a data dropout of one month in a
yearly time series. A Fourier adjusted time-series with 36 discrete points show a R2 of 0.990 in com-
parison to the slightly lower R2 of 0.986, when 12 points are used. The observed fitting errors do not
differ much between the two cases. Considering that the simulated curve is nearly sinusoidal, it can
be assumed that the Fourier adjustment will be a very efficient fitting method. The fitting errors are
much higher in real data, what will be seen in Chapter 3. Having two months of missing values (Fig-
ure 2.9) verifies this assumption, since R2 decreases from 0.994 with 36 points to 0.922 with a dis-
cretization of 12 points.

Figure 2.8: Assuming a data dropout of one month in a yearly time-series (solid line), the Fourier
adjustment (dashed line) shows better estimation of the original curve (solid line in Figure 2.7), if more
discrete values are provided. R2=0.986 for 12 values (left) and 0.990 for 36 values (right).

Figure 2.9: Assuming two months of data missing, the Fourier adjusted curve shows a better estimation
when more data points are provided. R2=0.922 (left) assuming monthly time-series and R2=0.994 when
10-day composites are considered (right).
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The above experiments are all run with a 2nd order Fourier series (m=3)1. Figure 2.10 illustrates,
that with 1st order series (a) a yearly anomaly will be simulated by the Fourier adjustment, whereas
higher order series (c) will not represent the expected seasonal vegetation cycle anymore. Higher
order Fourier series try to adapt to the short-time anomalies instead of extracting the smoothly vary-
ing vegetation signal, what is best achieved with 2nd order series as shown in (b).

Figure 2.10: It can be demonstrated, that the seasonal feature of vegetation is best approached by a
Fourier series with m=3 (2nd order) like shown in b). The Fourier adjustment in a) is a 1st order series
that can only simulate yearly features. c) shows a 4th order series, that will reproduce high frequency
components in the dataset (noise, dropouts). The solid curves represent the raw original data, the dot-
ted line is the first Fourier adjustment and the dashed line show the second weighted Fourier adjust-
ment. A linear regression between the original curve (Figure 2.7 right, solid line) and a) shows a R2 of
0.912, best fit is achieved by b) with R2=0.994 and c) doesn’t represent the seasonal curve at all with
R2=0.541.

1. It is discussed and assumed in section 2.5.2, that half-year features like the seasonal variation of vegetation
are best approached with m=3.

a) b)

c)
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3. The European Fourier-Adjusted and
Interpolated NDVI

The main application of the present work leads to a consistent set of biophysical land surface param-
eters, that will drive the Simple Biosphere Model SiB2 (Sellers et al. 1996a) at the regional scale.
These land surface parameters (see section 5.5) show a linear or exponential dependency from vege-
tation activity, which can be empirically estimated with the remotely-sensed normalized difference
vegetation index (NDVI). A correct estimation of NDVI is therefore the most critical task prior to the
calculation of the energy, carbon and water fluxes between the surface and the atmosphere. Vegeta-
tion varies temporally and spatially at very small scales1, but it was shown that GCM performance
significantly increased by using land surface parameterizations derived from coarse grid, remotely-
sensed vegetation data (Los 1998, Los et al. 2000), in comparison to fixed land surface parameteriza-
tions (Dickinson 1984, Sellers 1986).

Fung et al. (1997) suggested that subgrid information is essential for a better estimation of land
surface processes. Regional climate models (RCMs) have evolved during the recent years and work
with finer scales to explore regional climate variations induced either from natural or anthropogenic
forcings. Since remotely-sensed vegetation data is available in much higher spatial and temporal res-
olution than applied in global climate models, this study proposes a 0.1˚ by 0.1˚ (approximately 8km
pixel size at 47˚N) Pathfinder NDVI dataset with a temporal interval of 10 days for regional climate
models.

To generate a consistent European vegetation dataset over 11 years, there were several reasons to
use the NOAA/NASA Land Pathfinder dataset and to evaluate an own adjustment scheme for making
it suitable for regional SVATS:

• GIMMS FASIR-NDVI by Los et al. (1994), which is used by the revised Simple Biosphere
model (Sellers et al. 1996a), is only available in coarse resolution and monthly composites. Pub-
lic availability is restricted to the years 1987 and 1988. A higher spatial and temporal extended
FASIR-NDVI is in preparation, but will not be available in final release until Summer 2002 (Col-
latz 2000, personal communication).

• The NOAA Land Pathfinder NDVI is public domain and can be retrieved by Ftp. It is continu-
ously available from July 1981 until the present.

• The author intends to build local expertise, which can be used to understand the problems associ-
ated with and estimate the quality of vegetation products becoming available in the future.

In this chapter the generation of a continuous Fourier-adjusted and interpolated 11-year NDVI
dataset for the European domain (EFAI-NDVI) is presented. As illustrated in Figure 3.1, several
steps are performed in a linear sequence to create the resulting EFAI-NDVI dataset. The applied pro-
cedures will be outlined in the following sections 3.1 - 3.7. Especially sections 3.4 and 3.7 contain
the modifications to the original Fourier adjustment procedure provided by Los (1998). Special case
studies are presented, where this algorithm does not hold and solutions are evaluated as well as
tested.

1. Everyone will confirm this statement by taking a look out of the window (The author assumes here that your
window does not offer an outlook to either the Sahara desert or to the dusty red Mars surface).
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Figure 3.1: A Flow diagram illustrating the processing steps to generate the multi-year EFAI-NDVI.

3.1 Data Retrieval, Reprojection and Scaling

The Pathfinder NDVI dataset was retrieved1 from the years beginning with 1983 until the end of
1993, divided in 10-day composite files. A practical difficulty in using the data arises from the used
equal-area map projection, which is the Goode interrupted homolosine projection introduced to the
dataset by Steinwand (1994). Only few image processing tools are able to handle this kind of projec-
tion and the interrupted nature produces a data volume 78% larger than is needed to hold the terres-
trial data (Prince and Goward 1996).

1. The Land Pathfinder data is available at the GSFC Earth Sciences (GES) Distributed Active Archive Center:
ftp://daac.gsfc.nasa.gov/data/avhrr/global_8km

Data retrieval
1983-1993, 8km Resolution
Global 10-day composites

Regional scaling
Global  European Area Coverage→

Reprojection
Goode Homolosine  0.1˚x0.1˚ Lat/Lon→

Substitution of missing values
with NDVI=0

Enhanced 1. unweighted
Fourier Adjustment 2. weighted

3. weighted

Rejection of badly fitted values.
Reset missing data

Interpolation of data dropouts during
winter time in evergreen neeldeleaf
biomes

Land Pathfinder NDVI

EFAI-NDVI
(European Fourier-Adjusted and Interpolated NDVI)

Section 3.1

Section 3.3

Section 2.5 (Theory)
Section 3.4 (Application)

Section 3.4.4
Section 3.3

Section 3.5

Section 3.1

Section 3.1
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For the entire period, all datasets were reprojected to a regular lat/lon grid with a spatial resolution
of 0.1˚x0.1˚, using an algorithm from Baldwin (1996). This reprojection was implemented in the
Interactive Data Language (IDL) by the author in 1998. For all further steps, data amount was
reduced by only proceeding with the European domain with a latitude/longitude extent of [32N-75N,
20W-40E]. This domain extent is currently used by the ETH regional climate model (CHRM).

3.2 Programming and Implementation

IDL was chosen as the programming language for the Fourier adjustment, since it includes the
advantage of built-in matrix operations, graphic display capabilities and the ability to compile pro-
grams as well as testing them at the command line. Disadvantages of IDL include raw processing
speed loss and a higher amount of memory use compared to native programming languages like For-
tran and C. This is well made up by the very easy use of complex built-in routines and the possibility
to interactively display and check datasets through graphical output.

The IDL-program, which applies the Fourier adjustment1 to the remotely-sensed NDVI dataset,
consists of a core routine with the Fourier adjustment algorithm (see 2.5.3) implemented and an
input/output routine to handle the 11-year dataset extent.

The core routine applies the Fourier adjustment to a yearly time-series (36 10-day intervals) for
each specific latitude/longitude pixel. The pixel neighbors are not considered in the algorithm, i.e.
the adjustment technique is applied over time and does not imply any spatial relations among the sin-
gle pixels. From each corrected yearly time-series, only the middle six months (18 10-day intervals)
are used and the next adjustment is shifted by six months to generate a continuous time-series.

This way, “wrap-around” effects from December to January data are avoided and the results show
steady transitions between successive years.

Figure 3.2: The Land Pathfinder data is read and Fourier adjusted for one year, but only the middle six
months are written back to avoid wrap-around effects at the sides.

Example:
• 36 NDVI datasets (January 1984 - December 1984) are read and Fourier adjustment is applied.
• 18 NDVI datasets (April 1984 - September 1984) are saved
• 36 NDVI datasets (July 1984 - June 1985) are read and Fourier adjustment is applied
• 18 NDVI datasets (October 1984 - April 1985) are saved

1. The Fourier coefficients were calculated by solving the least squares regression problem described in 2.5.3.
Although the common used Fast Fourier Transform (FFT) algorithm has a better performance and is imple-
mented in IDL as a single compiled routine, it does not allow weighted Fourier series.

Read Jan 1984 - Dec 1984 Jan 1985 - Dec 1985 Jan 1986 - Dec 1986
Write
Read Jul 1984 - Jun 1985 Jul 1985 - Jun 1986 Jul 1986 - Jun 1997
Write
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3.3 Substitution of Missing Data

Prior to any adjustment to the raw data, missing points (cloud flagged and high latitudes during win-
ter season) are substituted with NDVI = 0, assuming that the majority of missing values is found dur-
ing periods of low surface temperature and therefore low vegetation activity (Los 1998).

After the Fourier adjustment algorithm is applied successfully, sequences of eight or more miss-
ing values in a row (80 or more days without data) are set to missing again, since they will not be
approximated successfully with this configuration1. Permanent data dropouts either occur in tropical
regions (see Los 1998) due to permanent cloud cover or during winter time at high latitudes, where
high solar zenith angles - or no sunlight at all - do not allow to use passive remote sensing in the vis-
ible wavelength.

Tropical vegetation is not present in the examined region. Whereas high latitudes show substantial
data dropouts, what poses a serious limitation on the usability of vegetation data in those regions. A
partial solution to this problem is presented in section 3.5.

3.4 An Enhanced Fourier Adjustment Procedure

The Fourier adjustment algorithm by Los (1998) has proved to be reliable and successful to remove
cloud interferences and atmospheric effects by identifying outliers in the NDVI time-series2. Los has
tested the algorithm by removing single months from of his 12-month time-series and reconstructed
the incomplete time-series with the Fourier adjustment technique. The results show close agreement
between the estimated and the original values. The standard error of all estimates was less than 0.05
* NDVI. In section 2.6 the author has enhanced this findings by including higher temporal resolution
into the theoretical analysis of the Fourier adjustment. Results in section 2.6 indicate that a finer dis-
cretization increases the effectiveness of the Fourier adjustment in actually representing the original
vegetation signal. This can be seen as a reasonable justification for the use of 10-day intervals in
favor of monthly ones.

Nevertheless, the spatial and temporal high resoluted NOAA Land Pathfinder NDVI data poses
serious problems for a correction with the Fourier adjustment provided by Los.

By visually checking the Fourier adjustments on the Pathfinder NDVI time-series, various special
cases are identified, where the original Fourier adjustment algorithm does not hold. In the proceeding
sections 3.4.1 - 3.4.4 these cases are extracted and modifications are applied to the original algo-
rithm.

1. See section 2.5.2: Only n/2m-1 outliers are corrected successfully. For a yearly time-series with 10-day inter-
vals n=36 and m=3, hence interpolations for more than 9 outliers in a row are suspect to fitting errors.

2. The Fourier adjustment technique presented in chapter 2 has been successfully applied to the GIMMS NDVI
dataset (Los et al. 1994) by Sellers et al. (1996b). The Sellers’ group has selected the GIMMS NDVI dataset,
because it was the only one available at the early stages of the ISLSCP project. They subsampled global data
derived from the AVHRR sensor to monthly composites with a spatial resolution of 1˚ by 1˚, using the maxi-
mum-value composite method discussed earlier.
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3.4.1 Adjustments to the weighting scheme

Figure 3.3: Extremely high weights (bold arrows, right) calculated from the first Fourier adjustment
(left, bold arrows) lead to an overestimation of the weighted Fourier curve in neighbor locations (fine
arrows, left). Solid line = Pathfinder NDVI data, dotted line = first Fourier adjustment, dashed line =
second weighted Fourier adjustment. The time-series is from 1987, NE of Norway.

As seen in Figure 3.3, the first Fourier curve (dotted line) is fitted through a measured NDVI time-
series (solid line), such that the squares of the errors are minimized. The data-points lying under the
Fourier curve receive very low weights; the ones above the Fourier curve are weighted very high
(Figure 3.3: bold arrows). The second Fourier fit (dashed line) - now taking in consideration the
weights - is running through the high weighted points, but does not have included any more the val-
ues with lower weights. This weighted least squares fit, which was originally thought to effectively
remove erroneous outliers in the GIMMS-NDVI dataset, does not hold here due to the following rea-
sons:

• the 0.1˚ by 0.1˚ Pathfinder NDVI dataset is not spatially subsampled and therefore includes
heavier noise. There is no smoothing effect as by taking the average of 100 neighbor values (1˚
by 1˚ subsampled NDVI data, Sellers et al. (1996b)).

• our time-series have more temporal variabilities, since the MVC-method is only applied to 10
days in comparison to one month as used in Sellers et al. (1996b).

• the above results in high slopes within the measured NDVI dataset. These slopes either occur due
to measurement errors or they represent the vegetation growth period. If these slopes are close to
high peaks, which receive high weights, the slopes will be ignored.

Several solutions can be considered to solve this problem:

a) create monthly composites instead of 10-day composites
b) decrease the spatial resolution
c) increase the number of harmonics in the Fourier series
d) adjust the weighting scheme of Sellers et al. (1996b)
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a) and b) Reduce the temporal and spatial resolution

The first two solutions will not help to create a better vegetation dataset than it is available from var-
ious sources (e.g. ISLSCP CD-ROM). There is no need to reproduce those datasets for the European
domain, since they can be retrieved with ease from global 1˚ by 1˚ gridded vegetation data. It was
shown in section 2.6, that a higher temporal resolution increases the ability of the Fourier adjustment
algorithm to actually represent the real vegetation behaviour and section 4.4 will show evidence for
the need of higher spatial resolution when estimating land surface vegetation. Choosing 10-day com-
posites with 0.1˚x0.1˚ resolution in favor of a monthly ones with a 1˚x1˚ latitude/longitude grid will
help to significantly improve the quality of this dataset.

c) Increasing the number of harmonics

As discussed in section 2.5.2, the number of harmonics was set to two (m=3), since half-year fea-
tures, like the vegetation seasonality, will be included in a periodic function with a one year period.
At the same time, the curve is interpolated over time, such, that a sequence of outliers in a
row will be corrected by the Fourier adjustment.

If the number of harmonics in the Fourier series is increased, the fitted Fourier curve is expected
to have lower squared differences, hence the weights will be less extreme and the weighted fit should
better represent the original data. The results with m=5 look very promising (Figure 3.4, right), since
the weighted Fourier curve adjusts well to the measured dataset. The vegetation leaf-out in spring is
not represented by this curve though, and neither is the typical seasonal variation. Two NDVI peaks
are visible in Figure 3.4 (right), what does not reflect a natural phenomenon. 1

Reducing the number of harmonics to one (m=2) (see Figure 3.4 left), has the effect that the
growth period is ignored. Such features are now considered as short term irregularities and will be
smoothed out in this configuration.

Neither extending nor shrinking the length of the partial Fourier series provides a better adjust-
ment of the measured NDVI time-series, what is in agreement with the experimental results of sec-
tion 2.6. The number of harmonics is therefore used as described in Sellers et al. (1996b).

Figure 3.4: Number of harmonics considered in the Fourier series: m=2 (left), m=5 (right). Solid line
= Pathfinder NDVI; dotted line = first Fourier adjustment; dashed line = weighted second Fourier
adjustment

1. Vegetation types with more than one growing season exist (e.g. crops, see discussion in section 3.7.3). But
this time-series does show a boreal vegetation in high latitude with a late growing season.

n 2m 1–⁄
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d) Adjust the weighting scheme:

Figure 3.5: Weighting function. The curves represent the weighting applied to the measured time-series
in relation to the fitting error of the first Fourier adjustment. dotted line = weighting by Los, solid line =
weighting applied, when NDVI > 0.2, dashed line = weighting for NDVI < 0.2.

Applying weights to the measured data helps to distinguish credible points from erroneous data and
is therefore central to the Fourier adjustment algorithm by Sellers et al. (1996b). This part was mod-
ified to enhance the quality of the Fourier adjustment. As seen before, high variability in the Path-
finder NDVI time series leads to very high weighted positive outliers and rejects all negative outliers
after the first Fourier adjustment. This means, that low NDVI values occurring in spring (days before
the growing period) are also treated as unreliable data and are ignored in the weighted Fourier adjust-
ment, since their neighbor points have high NDVI values and therefore receive high weights. This
problem was addressed by examining and adjusting the original weighting function (Figure 3.5, dot-
ted line):

   if (3.1)

Where
k = 4  (originally 2)

Low NDVI values, which are observed at the start and at the end of the growing season are now
receiving higher weights, if their values do not differ to much from the first Fourier fit (U has to be no
lower than -k). This weighting function, which also applies weights in a quadratic relationship to
high and positive fitting errors, is extended with the following condition:

(3.2)

Very high weights, which previously resulted from single positive outliers in the time series, are
suppressed by this condition and result in the new weighting function (Figure 3.5, solid line). Figure
3.6 shows the example from above, where vegetation growth starts only beginning of May, but with
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a steep slope. It shows a better approximation by the modified weighting scheme, as compared to the
original adjustment in Figure 3.3.

Figure 3.6: NDVI time-series with the modified weighting scheme applied here (right). Solid curve =
Pathfinder NDVI; dotted curve = first Fourier adjustment; dashed curve = weighted second Fourier
adjustment

3.4.2 Detection of positive outliers

In the years 1983 and 1987 several locations in eastern and northern Europe show unexpected high
NDVI values between January and March. These values are identified as reliable data by the Fourier
adjustment procedure. Considering vegetation cycles in high latitudes, the date when vegetation
begins to grow is shifted in time with a rate of about one week per degree latitude (Moulin et al.,
1997). Peaks in the vegetation cycle in latitudes from 40˚N to 75˚N usually occur end of July; no
vegetation peaks are to be expected in the spring season.

The assumption has been made that all single peaks should be ignored if they happen in the first
four months. These peaks are not identified by comparison to neighbor values as proposed by Moulin
et al. (1997), because this tended to be unreliable when applied to the very noisy Pathfinder NDVI
dataset. The following condition to the weighting function is applied instead, so that the early year
peaks are identified by comparing them to the seasonal trend:

IF  for all  then set (3.3)

This condition has the effect that after the first Fourier adjustment, high positive outliers occurring
before week 15 will be ignored by setting their weights to 0 for the second Fourier adjustment. Fig-
ure 3.7 shows the difference on a sample time-series from 1983 measured in eastern Europe.

Wi 3≥ i 15< Wi 0=
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Figure 3.7: Identifying outliers, which happen in the time from January until April. Sample time-series
from 1983 showing the effects of the early-peak detection procedure (right). Solid curve = Pathfinder
NDVI; dotted curve = first Fourier adjustment; dashed curve = weighted second Fourier adjustment.

3.4.3 A third weighted Fourier fit

For short vegetation growth periods, as they are typical for high latitude deciduous vegetation types,
another special case was identified: The vegetation growth period is represented well, but the Fourier
curve drops to very low levels in winter times (see Figure 3.8, dotted line). This phenomenon can be
explained as follows: the weighting function does not consider well the low NDVI values right
before and right after the growing season, because they are usually lying at or below the first
unweighted curve. If the low NDVI values outside the growing season are not taken into account as
they should, then the Fourier adjustment will generate a curve, which continues its trend (raising or
falling, according to growing season start and end).

Figure 3.8: A third Fourier adjustment (dashed line) is applied by weighting the second curve (dotted
line), 1984 time-series of NW Sweden.

This problem can be addressed as follows: by applying the weighting and fitting procedure again,
now to the second Fourier curve. The solution is described here as “approaching” the best fit,
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because previously ignored data will be weighted positive and perfect fitted values will keep their
weights. This third Fourier adjustment increases the time needed by the routine by more than 50%,
what is to be considered, if large multiyear datasets are processed. The quality enhancement of this
third Fourier adjustment is higher for latitudes around 50˚N-80˚N, where large seasonality is part of
the vegetation phenology (Moulin et al. 1997).

3.4.4 Repeated main period

Figure 3.9: Second period of the main Fourier frequency appears at the beginning of the time-series
(left). This has been corrected by rejecting Fourier adjusted values at the beginning of the year in time-
series, where vegetation activity is happening late.

For vegetation cycles in high latitudes, the proposed Fourier adjustment technique has the following
side-effects:

The vegetation-period , where vegetation shows activity, is very short for high latitudes (less
than half a year) and shifted into summer and autumn. The Fourier spectrum has its main frequency
at , which means that the length of the main function is
less than a year. A second period of this function appears at the beginning of the time-series (See
Figure 3.9, left), what can only be suppressed by higher order Fourier series (Kreyszig 1988)1. This
problem has been spotted in a substantial part of the adjustments; therefore the Fourier adjustment
algorithm was extended with the following condition:

(3.4)

The condition 3.4 estimates, whether the vegetation period is short and only occurs in the second
part of the year or if it is distributed equally throughout the year. The Fourier fit of the first three
months is rejected and the original pathfinder data are used, if this condition is true (Figure 3.9,
right). The threshold value was empirically set to 0.9 after testing the condition with the 1983 Path-
finder NDVI dataset at high latitudes.

1. A Fourier adjustment with higher order partial Fourier series will not hold for the assumption, that vegetation
cycles vary smooth over time and have half-year cycles.
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3.5 Interpolation of Missing Data

Remote sensing of NDVI strongly depends on the presence of sunlight, since absorption in the green
biomass is measured at wavelengths in the visible spectrum. In the winter season at high latitudes, no
sunlight is present. This results in missing NDVI data (See Figure 2.6, left). Most vegetation types
(deciduous forests, grassland) will be in dormancy or not show activity under the snow cover during
that period - this way missing data of these vegetation types will not affect the quality of the vegeta-
tion dataset. Evergreen needleleaf trees project through snow cover and influence the surface albedo
as well as the roughness length (Betts and Ball 1997). Their presence therefore needs to be taken into
account during the time, when no data can be obtained by satellite remote sensing. The applied Fou-
rier adjustment only provides correction for three missing months in a row (see section 2.5.2) and
larger data dropouts are set to missing again. Los (1998) is replacing the missing data with the NDVI
value at the end of the growing season (usually October) for evergreen needleleaf vegetation types. A
linear interpolation from the vegetation senescence to the growing season in the following year was
used here instead, to provide steady transitions inbetween single years. An interpolated multi-year
dataset can be seen in Figure 3.10.

Figure 3.10: Interpolations of missing data during winter time at high latitudes for evergreen forest in
Finland (top) and Norway (bottom). Dashed line=Pathfinder time-series, solid line=Fourier-adjusted
and interpolated time-series. Time-series represent one single pixel.
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3.6 Examples of Adjusted NDVI Time-Series

b)a)

c) d)

f)e)
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Figure 3.11: Example of time-series after the application of an enhanced Fourier adjustment to the
Pathfinder NDVI presented in 3.4: a) Finland, 62˚N 25˚W, 1993, b) Algeria, 34˚N 2˚E, 1984, c) Ger-
many, 50˚N 7˚E, 1993, d) Ireland, 53˚N 7˚W, 1984, e) Poland, 52˚N 16˚E, 1993, f) Switzerland, 47˚N
8˚E, 1993, g) Italy, 44˚N 12˚E, 1993, h) Iceland, 65˚N 17˚W, 1984. solid line = The original Pathfinder
data, dashed line = adjusted time-series.

3.7 Remaining Anomalies

3.7.1 Positive outliers at the end of the vegetation period

Figure 3.12: Very high NDVI peak at the end of the growing season. After the first Fourier adjustment
(dotted line), the weighting scheme considers the high NDVI value as reliable and calculates a
weighted Fourier curve (dashed line), that does not represent the vegetation cycle. Time-series from
1983, Finland.

The closer examination of Fourier adjusted time-series reveals another special case, which is showed
in Figure 3.12. The very high NDVI value at the end of the growing season does not have any biolog-
ical backgrounds, if the vegetation growth and senescence period are considered to happen smoothly
over time (Moulin et al. 1997). Taking into account that maximum annual NDVI values above 0.7 are

g) h)
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not expected for any vegetation type (DeFries et al. 1998), this anomaly is explained as either a mea-
surement or processing error in the Pathfinder dataset1. The Fourier adjustment is weighting this
anomaly as a reliable NDVI value and calculates a very unusable curve (dashed line). However, this
feature has only been spotted in less than 1% of all examined time-series. A correction scheme is not
yet included into the Fourier adjustment procedure. A solution to this special case is in preparation
and will presented by the author when available.

3.7.2 Overestimation in boreal forest habitats

Boreal evergreen forests show a steep increase in NDVI values, which corresponds to snowmelt in
those regions (Moulin et al. 1997). The sudden variations are detected correctly by the Fourier
adjustment (Figure 3.13). Due to the square wave-type shape of this vegetation cycle, the partial Fou-
rier series with m=3 will not be able to analytically represent the flat parts of the NDVI time-series.
The snow-free NDVI-values from evergreen trees in Boreal regions are overestimated. In Figure 3.13
this effect rises the estimated NDVI value up to 0.2 NDVI above the measured value. Los (1998) is
rejecting those overestimates in all time-series - independent of the vegetation type - in favor of the
original data. This rejection-procedure has been evaluated here as well, but was not applied, since
retaining the original data will lead to underestimates and introduce high frequency components
again.

Figure 3.13: Boreal evergreen forests (here: 1993 time-series from the northern part of Sweden) have a
square-type shape in the yearly vegetation cycle. The Fourier adjustment can’t analytically represent
this shape. Note the rejection of adjusted values in the first months of the year.

1. The NOAA Pathfinder team has addressed this problem in their documentation found on the web (NOAA/
NASA 1999). The observed anomalous high NDVI values usually occur during times of low vegetation
activity and are visible linear features in the dataset. They are explained as transmission errors due to low
antenna angles near the horizon, usually occuring in polar regions where only few ground receiving stations
are located. Whereas other data dropouts are suppressed by the maximum-value composting method, these
errors are carried throughout the whole processing steps and still appear in the final Land Pathfinder product.
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3.7.3 Agriculture

The basic assumption A-1 for the applied Fourier adjustment leads to an optimized detection of sea-
sonal occuring features. Agricultural areas have distinct growth patterns, which usually differ from
the ones observed in natural vegetation. Justice et al. (1985) has monitored Chinese crop sites and
detected various crop-specific patterns in the temporal development of NDVI at those sites. Rice
shows distinct biomodal NDVI time-series in contrast to the seasonal feature observed for other veg-
etation types. Spring wheat, winter wheat and mixed crop areas will not show the expected patterns
for a correct Fourier adjustment. Although most of the crop areas will be correctly represented by the
current algorithm, a specific correction scheme has to be evaluated to correctly represent all crop
areas, since they are present in about 30% of the European land surface.

3.7.4 Growth-season  start and end

A higher temporal resolution was selected for this dataset, because the actual vegetation signal can
be extracted more accurately from an error-contaminated time-series if more values are present.
This is performed very well for most cases (Figure 3.11 a-h).

However, it needs to be emphasized here that cases with a high seasonality like shown in Figure
3.13 overestimate the vegetation activity when sudden changes at the start and the end of the growth
season occur. There are many cases where the discrimination of the correct slope in spring or autumn
will not even be possible by visually inpecting the time-series. This problem certainly needs further
research. It is expected, that these errors have minor impact, since low ambient temperatures only
lead to small photosynthesis assimilation rates in the coupled biosphere - atmosphere model (Los
1998).
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4. Results: The 1983-1993 EFAI-NDVI

The Fourier adjustment algorithm presented in section 2.5 and applied to the Pathfinder dataset in
sections 3.3 to 3.5 was tested by visually inspecting yearly time-series. This procedure has led to var-
ious corrections in the adjustment technique before the final processing of the full dataset from 1983-
1993 was performed.

The resulting European Fourier-Adjusted and Interpolated NDVI (EFAI-NDVI) dataset is pre-
sented here and undergoes several statistical examinations. The assumption A-2 states that the cor-
rection scheme for the Land Pathfinder NDVI is most significant where cloud cover is supposed to
occur. This applies to dense green vegetated areas, where impacts of cloud cover and atmospheric
water vapor are expected to be strongest. Mid latitude forest vegetation undergoes a strong correc-
tion, whereas semi-arid areas and deserts are mainly invariant to the Fourier adjustment. Vegetation
varies seasonally, dependent on the type of plant and the environmental conditions. Vegetation class
specific seasonal trends are represented well by the EFAI-NDVI. Findings by Myneni et al. (1997)
have indicated an increase of vegetation activity in northern latitudes through NDVI time-series for
the period from 1981-1991. A positive inter-annual trend of 1.4% yr-1 is detected here from the
multi-year NDVI signal in the decade ranging from 1983 to 1993; a result that needs further verifica-
tion and should be trusted with care, since multi-year satellite remote sensing datasets can be subject
to systematic errors and drifts (Hurrel and Trenberth 1997).

Spatial variations within the examined dataset lead to various findings: Some areas do not show
substantial spatial variability up to 1˚x1˚ grid resolution, where other examined sites strongly justifiy
the use of a higher spatial resolution, because there is significant spatial variability in the land surface
vegetation within small areas detectable.

The resulting dataset is also compared to the FASIR-NDVI by Los (1998), what indicates a gen-
eral consensus in the inter-annual differences. The two datasets show different amplitudes, especially
at the end of each growing season. Variations between the two datasets are likely to be caused by dif-
ferent correction algorithms involved or by the maximum-value composite sampling of the FASIR-
NDVI.

4.1 Latitudinal Variation

The effect of the Fourier adjustment algorithm varies by latitude (Figure 4.1). The applied correc-
tions are most significant for latitudes between 40˚ and 55˚ northern latitude, whereas subtropical
regions around 30˚N have characteristic low NDVI values and are not subject to heavy cloud cover.
This minimizes the effect of the applied correction for low latitudes in the used domain. The Fourier
adjustment has the greatest effect where NDVI values are supposed to be most suspect due to cloud
interference in mid latitudes. The interpolation of missing values in northern parts of Europe for
evergreen needleleaf forest will only show a minor effect here, since all missing NDVI values - also
the non interpolated ones - are set to 0 prior to spatial averaging the dataset. The interpolation of data
most certainly influences the estimation of biophysical land surface parameters and associated bio-
sphere-atmosphere processes in future applications.
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Figure 4.1: Latitude dependent mean NDVI plot: The Fourier adjustment (dashed line) rises the mean
NDVI values in mid latitudes to almost 50% over the Pathfinder NDVI values (solid line). The effect of
interpolating evergreen needleleaf vegetation values during winter in high latitudes can be clearly
identified around 60 degrees (dotted line), where most of this vegetation type occurs. The latitudinal
NDVI values were averaged over longitude and time for the year 1987.

4.2 Seasonal Variation

It is assumed that the Fourier adjustment technique is also showing higher effectiveness when a large
fraction of dense green vegetation cover is present, since atmospheric disturbance will have a higher
effect on the absolute NDVI values. To illustrate this relationship, the European NDVI was averaged
by land cover class1 as shown in Figure 4.2.

Figure 4.2: NDVI values averaged by SiB biome for the 1992 dataset(classification scheme see section
5.2). [light grey] shows the biome averages of the original Pathfinder dataset, [dark grey] is the Fourier
adjusted dataset and [Black] demonstrates the effect of interpolating evergreen needleleaf vegetation
values (SiB class 4). Temporal NDVI anomalies are shown by the plotted standard deviation for each
SiB vegetation class. Missing values of the other datasets were set to NDVI=0 prior to averaging.

1. A complete description of the used land cover classification can be found in section 5.2
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Mid-latitude forest biomes 2,3 and 4 are undergoing a heavy adjustment, whereas shrub cover,
bare soil and desert classes 8,9 and 11 are only subject to marginal corrections. Boreal evergreen
needleleaf forests (Class 4) are interpolated for missing values during winter time by the Fourier
adjustment procedure presented in chapter 3. This effect is clearly visible in Figure 4.2 (black), but
does only have minor impact to the overall correction.

Vegetation types can be clearly distinguished by their difference in seasonal variability. This
approach was used to generate land cover maps from remotely-sensed vegetation in recent publica-
tions (Moulin et al. 1997 and DeFries et al. 1998). Figure 4.2 (right) and Figure 4.3 both plot the
temporal standard deviation and the yearly mean NDVI for each of the 12 land cover classes1.
Deserts (class 9) and tundra (class 10) both show low mean NDVI values, where deserts have a char-
acteristic low NDVI throughout the year and tundra exhibits a high inter-annual variation. High mean
NDVI values and large inter-annual ranges are found in mid latitude forests (classes 2 and 3). Grass-
land (class 7) has a high mean NDVI and does not show much seasonal variation. These findings are
in close agreement with the results from the global ISLSCP-II initiative presented by Los et al.
(2000). Differences are observed for grassland, shrubland and other semi-arid land cover classes.
These differences can be explained due to the very coarse grid resolution of the ISLSCP-II data,
what will support the theory by Fung et al. (1997), that sub-grid vegetation-components2 are essen-
tial for the correct estimation of the vegetation properties - which certainly needs further examina-
tion. However it is assumed here that these differences in certain biomes result because the ISLSCP-
II data was globally sampled, where the present data only includes vegetation data from Europe.
Semi-arid vegetation is supposed to differ much across different continents.

Figure 4.3: Mean annual NDVI, averaged per SiB land cover type is plotted against its temporal vari-
ability. Desert, Shrubs and bare soil (Biomes 8, 9, 11) show low vegetation activity and also have low
annual variabilities, grassland (Biome 7) has a high mean NDVI and low temporal deviation, whereas
forest biomes (2 ,3 ,4) show high NDVI values and also a significant seasonal variability.

Sufficient spatial and temporal accuracy of the NDVI dataset and the actual representation of the
seasonal vegetation variability is a main requirement to quantitatively derive the associated land sur-

1. The SiB classes 1 (tropical forest) and 5 (evergreen broadleaf forest) are not present in the examined domain.

2. Certain SVATS work with sub-grid vegetation classes to better estimate fluxes in a heterogeneous, but
coarse-scale gridded land surface: a mosaic pattern with various sub-grid classes is used in the RAMS
SVATS for instance.
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face parameters for use in the Simple Biosphere model. In Figure 4.4 the temporal development of
NDVI for the 12 SiB land cover classes is shown. The values are spatially averaged by land cover
class and plotted over time for the 1992 EFAI-NDVI product. The mean values are shown together
with their +/- spatial standard deviation. Except for the desert class 11, all classes show a substantial
standard deviation, what is obvious, because vegetation classes do not reflect a homogeneous vegeta-
tion type, but rather include a variety of plant types with similar properties. They also occur in differ-
ent eco-zones (eg. different latitude or height), such that plant phenological characteristics are
variable for the same vegetation type. This finding is important and certainly will be addressed in the
future research of LSP’s, because land surface properties are NDVI- as well as land cover type
dependent.

a) b)

c) d)

e) f)
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Figure 4.4: Seasonal characteristics from NDVI time-series for the 12 SiB land cover classes (a-j).
Classes 1 (tropical rainforest) and 5 (Deciduous needleleaf forest) are not present in the regional Euro-
pean domain. Solid line= averaged NDVI, dashed line = average +/- standard deviation. Missing val-
ues were set to NDVI=0 prior to averaging.

4.3 Inter-Annual Variation
The naturally changing environmental conditions affect the timing of the vegetation phenology by
definition (Farquhar 1980, Nultsch 1996, Collatz et al. 1998). In addition to the seasonal trends pre-
sented in section 4.2, inter-annual signals can be extracted from NDVI datasets. There exist natural
phenomenas on time scales between 1-4 years like the El Niño/Southern Osccillation (ENSO) or vul-
canic eruptions on one side and long lasting trends like the anthropogenic carbon dioxide increase in
the atmosphere on the other side. Land surface vegetation can serve as an indicator for climate
change, because it is influenced through environmental forcings that are excerted by these phenome-
nas. Land surface vegetation also provides several feedback mechanisms with its radiative and phys-
iological characteristics. Bounoua et al. (1999) demonstrated this relationship by a coupled
biosphere-atmosphere model with a doubled CO2 scenario.

Myneni et al. (1997) has found strong evidence from remotely-sensed NDVI datasets, that photo-
synthetic activity of terrestrial vegetation increased and that the vegetation growing season length-
ened by several days in the decade from 1981 to 1991. The regions exhibiting the greatest increase
lie between 45˚N and 70˚N, where the most warming has been observed due to early disappearance
of snow. The findings indicate a positive correlation between the increase in amplitude of the sea-
sonal cycle of atmospheric CO2 since the early 1970s and the terrestrial net primary productivity.

g) h)

i) j)
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The ENSO phenomenon has a typical period of 2 to 7 years and results in a displacement of rain-
fall patterns in the global tropics and anomalous warmings in the central and eastern pacific ocean
waters. Anyamba and Eastman (1996) have shown that inter-annual variabilities in the South Africa
AVHRR NDVI values show a relationship to the typical ENSO variables measured in the pacific.
Their findings for the observed years 1986 to 1990 illustrate, that remotely-sensed vegetation prod-
ucts can serve as a good indicator of inter-annual climate variabilities.

As a conclusion, it is possible to detect inter-annual trends in global or regional NDVI patterns,
but it needs to be considered that remotely-sensed NDVI is only available for the last 10-15 years,
what poses a strong limitation to the analysis of time-series longer than a decade for climatic use.
The magnitude of these trends are in between 1-3% (Myneni et al. 1997), what is similar to the esti-
mated margin of errors (see section 4.6). Interannual signals have a stronger amplitude when only 2-
4 years are compared. The magnitude of inter-annual variations is about 10-15% of the seasonal
amplitude (Los et al. 2000), so that more confidence is put in inter-annual variations than in inter-
annual trends.

Although error sources induced by the type of measurement are large as described above, a trend
analysis is performed here for the EFAI-NDVI dataset through the whole time-series. It shows a gen-
eral positive trend of 1.4% per year by using a linear estimate for the examined time period from
1983 to 1993 (Figure 4.5). These findings are consistent with the results published by Myneni et al.
(1997), who proposed an increase of 7-10% in a 9 year Pathfinder time-series and 8-14% in 8 a year
GIMMS time-series.

Figure 4.5: Spatially averaged EFAI-NDVI in the period from January 1983 until December 1993 (+).
The linear regression (solid line) indicates an increase in vegetation activity of 1.39% per year.

It is evident, that not all vegetation types will show the same response to altered CO2 conditions in
the atmospere, what is illustrated in Table 4.1. Estimates for the response of net primary production
to increased CO2 are indicated for several of the vegetation classes as presented by Los et al. (2000)
for global extents.

However, these results have to be validated by longer time-series and with better corrections to the
error-sources in the NDVI dataset. Myneni et al. (1997) shows, that year-to-year variabilities like the
unusual global warming of 1990 can strongly influence a decadal trend analysis. There is more cred-
ibility in the analysis of vegetation behaviour at at specific years.
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Inter-annual differences are best analyzed by comparing single years from the multi-year dataset.
In Figure 4.6 differences are seen in the start and end of the growing season as well as the amplitude
variability between the summer and the winter NDVI over Europe. The year 1990 had a very long
growing season in comparison to the year 1992. These results need further validation with measured
data from climatic time-series.

Figure 4.6: An overlay of the mean NDVI yearly time-series for the years 1983-1993 shows differences
in the seasonal cycles. The curves are de-trended for the trend found in table 4.1.

Table 4.1: A linear trend analysis of the EFAI-NDVI by vegetation type. NPP trend estimates
from the global FASIR-NDVI through a biochemical model presented in Los et al. (2000)

SiB Biomes EFAI NDVI
trend [yr-1]

NPP
trend [yr-1]

- Global 1.39% 1.3%
2 Deciduous broadleaf 1.49% -
3 Mixed broadleaf & neeleleaf 1.21% 1.5%
4 Evergreen needleleaf 1.50% 2.5%
6 Broadleaf and groundcover 1.39% 1.2%
7 Grassland 0.37% -
8 Shrubs and groundcover 1.33% -
9 Shrubs and bare soil 1.27% -
10 Tundra 1.73% 2.5%
11 Desert 1.45% -
12 Agriculture 1.42% 1.2%
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4.4 Spatial Variation
The Fourier adjustment discussed in section 2.5 and applied to the NOAA Pathfinder NDVI in sec-
tion 3.4 is a temporal correction of single pixels and does not account for spatial correlations
between the pixels. Eklundh (1995) estimates uncorrelated noise to spatially varying scene informa-
tion in AVHRR NDVI by measuring inter-pixel variability with a semivariance function. The find-
ings indicate that spatial differences at the instrument pixel level is substantially influenced with
noise, such that the usefulness of pixel level (1.1 km) comparisons is to be questioned. Semi arid
areas showed lower inter-pixel noise than wetter areas, that are heavily contaminated with cloud
cover, what is in agreement with the results in sections 4.1 and 4.2. Inter-pixel noise was furthermore
found to be lower when datasets were sampled over time, which strengthens the assumption that the
temporal Fourier adjustment applied here is also effective in removing spatial noise from registration
errors, instrument malfunction and cloud cover.

Where spatial subsampling with the maximum-value composite method will effectively remove
cloud contamination and atmospheric interferences, spatial features at certain scales are likely to be
ignored by this process. It needs to be verified if the higher 0.1˚ resolution dataset allows to better
represent biological features on the land surface than 1˚ datasets as the FASIR-NDVI. Townshend
and Justice (1990) analyzed the scene variance dependent on pixel resolution size with Landsat Mul-
tispectral Scanner (MSS) data ranging 0.1 to 100 km cell size. They found considerable differences
in the scene variance depending on the ecological zone covered by the imagery. It was shown, that
although most of the changes in the images occured at fine scales (0.1-1km), a substantial portion of
the spatial variability was detectable at coarser resolutions. They concluded that it is very difficult to
select a suitable spatial resolution for all areas.

In comparison to this study, Belward (1992) applied spatial analysis to AVHRR datasets with res-
olutions from 1 to 24 km and tried to estimate the mean object sizes found in a particular scene. The
findings are in close agreement with the results from the study by Townshend and Justice (1990).
Some areas inherit increasing spatial NDVI variability with increasing cell size, but areas with high
spatial variability at fine resolutions exist as well, dependent on the examined site. Areas were found,
where cell sizes of 24 km1 still were a good approach to represent the main scene features.

The above findings were all performed with either maximum-value composited or raw datasets
with no corrections applied. It is assumed by the author that much inter-pixel variance occurs due to
temporal inconsistencies in such datasets.

A spatial analysis as described in Richards and Jia (1999) is performed for the 0.1˚x0.1˚ European
Fourier-Adjusted and Interpolated NDVI (EFAI-NDVI) dataset of July 11-21, 1987. NDVI distribu-
tions at different cell sizes are examined for their spatial standard deviation at different locations
within the European domain. The results of this analysis are shown in Figure 4.7. For the interpreta-
tion of the plots it is important to remember that when sampled cell size is smaller than the mean size
of the scene’s dominant objects, then neighboring pixels are highly correlated and inter-pixel stan-
dard deviation is low. Where the cell resolution approaches the main feature size, neighboring pixels
are less similar and standard deviation is supposed to rise or show a peak. Where the resolution is
larger than the main land surface features, standard deviation will again be low. Thus, the spatial
standard deviation will show a maximum-value when the size of the sampled area approaches the
size of the main features present in the remotely-sensed area.

1. Approximately  0.2˚ in a latitude/longitude grid at medium latitudes
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Results show considerable differences between the observed areas: for mixed forest and grassland
vegetation assumed in a), f) and h), the main land surface features seems to occur within larger
extents, since spatial variation continuously rises, what is a strong indicator that land surface diver-
sity can be described with a coarse resolution as used by Los et al. (2000) for the ISLSCP-II initia-
tive. In large desert and bare soil areas, spatial standard deviation does not show any significant
values, even at 15x15 pixel samples - what corresponds to 135x135 km on the land surface. In con-
trast, graphs c), f) and g) are strong indicators for scene object sizes below the 1˚x1˚ grid size, that
are only detectable with dataset resolutions like the one used in this work. Plot i) shows randomly
chosen test sites over the whole dataset. It is evident that significant spatial NDVI variability occurs
below the 1˚x1˚ and even below the 0.5˚x0.5˚ resolution for most areas within the examined domain
- dependent on the vegetation type present. This finding will need further examination, since the cor-
rect spatial and temporal estimation of NDVI is central for the estimation of the land surface energy,
mass and momentum fluxes in biosphere models.

Figure 4.7: NDVI spatial standard deviation in relation to the sampled cell size. The x-axis shows the
cell size as the amount of neighbor values included in the sample. High spatial deviations indicate, that
dominant features are occuring at that particular cell size. The analysis was performed at different
locations within the European domain for the July 11-21, 1987 EFAI-NDVI dataset: a) Germany 50˚N
10˚E, b) Hungary 47˚N 17˚E, c) Sweden 58˚N 15˚E, d) Algeria 35˚N 3˚E, e) Switzerland 47˚N 8˚E, f)
Poland 52˚N 17˚E, g) Sweden 58˚N 15˚E, h) Germany 51˚N 10˚E, i) Central Europe (multi-plot).

a) b) c)

d) e) f)

g) h) i)
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4.5 Comparison to the FASIR NDVI

Among other available NDVI datasets, the ISLSCP-II FASIR-NDVI by Los et al. (2000) is the one
most similar to the generated EFAI-NDVI, since it also bases on Fourier adjustment of NOAA NDVI
time-series. The FASIR-NDVI is available in a pre-release1 for monthly composites and the time-
period from 1982-1990 with a 1˚ by 1˚ global extent. A comparison between the two datasets (where
only the European domain was used for Los’ dataset) indicates various differences (Figure 4.8).
Since the FASIR-NDVI is only a monthly dataset, it is assumed here that the montly values were set
to the 20th day of each month. This is not evident, since the maximum-value composite method does
not provide any information about the temporal occurence of the sampled values.2

The EFAI-NDVI is excerting larger amplitudes in the seasonal vegetation cycle than the FASIR-
NDVI dataset. It also behaves differently at the end of each growing season - it takes longer until
vegetation activity ceases in autumn. Although, some of the inter-annual variabilities like lower
amplitudes in 1989 are visible in both time-series.

The amplitude differences can result from the different processing steps involved in the two
datasets. The FASIR - NDVI was undergoing different corrections for sensor degradation, aerosols
and has a compensation for viewing angle and solar zenith angle effects applied, that differs from the
one used by the NOAA Pathfinder team.

Figure 4.8: Spatially averaged time-series from 1983-1990 for the European domain. The (+) repre-
sents the EFAI-NDVI, where (-) is the FASIR-NDVI. Interannual variations show agreement, but differ-
ences exist in the seasonal amplitude. The end of the vegetation season is subject large differences
between the two datasets.

The Fourier adjustment described by Los (1998) rejects Fourier adjusted values when they are
2% above the maximum of four nearest neighbor values. This procedure leads to the paradox situa-
tion, that faulty measured values are retained in favor to the adjusted Fourier curve. Since outliers in
NDVI time-series are mostly low values, a smaller amplitude is expected as a result if the NDVI data
is spatially averaged like shown in Figure 4.8. Another difference between the processing steps is,
that the FASIR-NDVI was spatially and temporally subsampled by the maximum-value composite
method discussed earlier. This method favors high NDVI values over lower ones, what has its justifi-
cation, when assumption A-2 is considered to be reliable. In sections 3.4.2 and 3.7.1 it was shown,
that this is not always the case and positive outliers can happen, especially during times of low vege-

1. The ISLSCP-II FASIR-NDVI dataset as well as other satellite derived global land surface parameters are
available at: [ftp://islscp2.gsfc.nasa.gov/islscp2_data/] for public use. The final versions of the datasets will
be published by 2002.

2. An earlier approach, where both datasets had time-series starting at the beginning of the first month, showed
a substantial phase-shift of half a month.
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tation activity. It is therefore expected, that the FASIR-NDVI will contain these outliers in the highly
averaged dataset and overestimate the NDVI outside of the vegetation season1.

The high values at the end of the growing season in the EFAI-NDVI curve most likely results
from the inability of the current adjustment algorithm to detect the vegetation curve drop at that time
in many cases. This issue needs to be addressed in the future to have more evidence for the explana-
tions above.

4.6 Error Estimation

Satellite remote sensing of vegetation has to deal with the various error sources as discussed in sec-
tion 2.2. Most problems are associated with atmospheric absorption, cloud cover, soil effects, spatial
variability, sun-target-sensor geometry estimation, spatial registration errors and sensor degradation
during operation. These effects are partially accounted for with empirical correction techniques and
allow to estimate spatial and temporal distribution of land surface vegetation. Depending on the use
of these datasets, the errors will show lower or higher impact. It is not the intention here to present a
mathematical error estimate, but rather to provide an insight into the quality of the presented dataset
in relation to their scientific application.

Errors that produce interferences in the NDVI signal are either resulting from the AVHRR instru-
ment design and the satellite itself or they are related to external sources. The NOAA satellite’s
instrument degradation is well descibed by various sources (Rao and Chen 1996, Los 1998) and
empirical relationships can be effectively applied to account for this error. The overall satellite
instrument degradation is compensated for up to 90-95% with those post-launch calibrations.

1. The FASIR-NDVI is sampled 300 times heavier than the EFAI-NDVI dataset presented in this work. The
maximum-value composite method has the following effect in this resampling: If one positive outlier occurs
in 300 pixels, it will be included in the FASIR-NDVI and trusted as reliable. In comparison, this single out-
lier was effectively removed here, if it occurs in in early spring. The removal of positive outliers was not per-
formed, but is an issue for future updates (see section 3.7.1).

Table 4.2: Error sources in the remotely-sensed AVHRR NDVI

Error source ΔNDVI Investigator
Ozone absorption 0.0 - 0.03 Townshend et al. (1994)
Water vapor absorption - (0.01 - 0.10) Los (1998)
Rayleigh scattering - (0.02 - 0.04) Townshend et al. (1994)
Aerosol scattering - (0.1 - 0.2) Los (1998)
Overall atmospheric error - (0.1 - 0.3) Los et al. 1994)
Soil background reflectance 0.05 Qi et al. (1994)
In-flight sensor degradatation 0.07 - 0.10 Rao and Chen (1996)
Clouds - (0.0 - 0.7) Los et al. (1994)
Registration error (for 8km resolution) 0.00 - 0.03 Los et al. (1994)
Bidirectional reflectance -0.10 - 0.05 Los et al. (1994)
Overall errors prior to corrections 0.1 - 0.2 Los (1998)
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Atmospheric contamination and cloud cover tend to lower the NDVI value (Table 4.2), which cor-
responds to the basic assumption A-2 explained in section 2.5. Figures 3.11 a-h indicate that atmo-
spheric effects are successfully eliminated by the Fourier adjustment technique and also by the
maximum-value composite method applied to the raw Pathfinder NDVI. The Pathfinder dataset itself
is corrected for ozone disturbance and rayleigh scattering (James and Calluri 1994).

The bidirectional reflectance distribution and registration errors are two of the remaining incon-
sistencies not corrected in the present EFAI-NDVI dataset. These are supposed to appear as non-sys-
tematic errors. Partially corrections for external influences (like solar zenith angle or aerosols) will
introduce general overestimations or underestimations of the NDVI. Spatially and temporally aver-
aging NDVI-data for climatological use is assumed to significantly reduce those uncertainities. For
spatially averaged NDVI, Los et al. (2000) estimates that the inter-annual signal can be detected with
an uncertainity of 20-30%, a finding that strongly stands for the usability of remotely-sensed NDVI
for climatological purposes. Interannual trends have to be trusted with care though, since the overall
error in the dataset is about the same magnitude as the trend signal itself, when applied to a decadal
time-series only.

Missing data were not listed as an error source here, but they also pose a serious limitation to the
estimation of land surface properties at high latitudes and in tropical regions. The maximum-value
compositing method and the Fourier adjustment technique significantly improve the quality of
remotely-sensed NDVI datasets, but they can also introduce overestimates as described in sections
2.4 and 3.7.
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5. Land Surface Parameterization

5.1 Introduction

Parameterizations of the land surface processes formulate radiative and turbulent transfers between
the vegetation, the soil and the lower boundary layer of the atmosphere. Early GCMs demonstrated a
high impact of albedo, surface roughness and surface wetness on the atmospheric fields. But first
implementations of these surface properties in circulation models were unrealistic, because the
fluxes of radiation, sensible and latent heat and momentum were formulated as independent and
mostly static processes.

In the mid 1980s, the vegetation-soil system was set up as an independent model (BATS: Dickin-
son 1984, SiB: Sellers 1986), so that the system could determine its own way how to interact with the
atmosphere. These biosphere models have been successively improved in order to be coupled to
regional and global circulation models. The main processes include the exchanges of radiation (Fig-
ure 5.1, left), the fluxes of sensible and latent heat (Figure 5.1, right) and the frictional forces of the
“rough” land surface. A theoretical review of these processes can be found in Sellers et al. (1997).

Figure 5.1: Land surface - atmosphere interactions: The global radiation budget, describing the
amount of incoming radiant energy absorbed by the land surface (left) and the outgoing heat fluxes
(right). (Figures by Sellers et al. 1997)

Biophysical properties of the land surface, especially vegetation itself, determine a substantial
amount of the interactive biosphere-atmosphere system. The interactions can be summarized as fol-
lows:

Radiation absorption:
Spectral properties of leaves makes vegetation highly absorbent in the visible wavelength
interval (PAR, 0.4-0.72µm) and moderate reflective in the near-infrared region (0.72-
4.0µm). Bare soil shows no such contrast.

Momentum transfer:
Vegetation presents a rough, porous surface to the planetary boundary layer airflow. The
resulting turbulence enhances the transport of sensible and latent heat away from the
ground
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Transpiration:
CO2 assimilation in plant leaves requires an open pathway between the atmosphere and
the water saturated leaf interior and therefore leads to an inevitable loss of water vapor
over the same route. These fluxes are driven by the plant stomates, which are regulated
by the incident photosynthetical active radiation PAR and various environmental stress
factors (temperature, air humidity, leaf water potential) and are characteristic for each
plant type. Transpiration is highly sensitive to various atmospheric and surface proper-
ties.

Precipitation interception and evaporation:
Soil and plants intercept, store and evaporate precipitation - which results in a decreased
precipitation input to the soil, decreases sensible heat flux and increases evaporation.

CO2 flux
Leaf photosynthesis leads to a CO2 flux. It is dependent on light (PAR) intensity, CO2
concentration in the atmosphere and water stress.

Soil moisture availability:
Soil water content (water stress) is significantly altered by vegetation and vice versa.

Insulation:
The soil surface under a dense vegetation canopy intercepts less radiation and the soil
energy budget (evaporation, sensible heat flux, ground heat flux) under vegetated cano-
pies is reduced.

All these processes are simulated in the current LSP schemes like SiB2 with individual modules
driven by land surface parameters. To calculate land surface radiant and turbulent fluxes for large
spatial scales, land surface parameters can be estimated by (satellite) remote sensing techniques
described in chapter 2. Especially the surface radiant and turbulece properties are estimated very
well by satellite remote sensing through simple relationships to NDVI. Many of the surface pro-
cesses like carbon, turbulent, latent heat or sensible heat fluxes are determined through these proper-
ties and can therefore be spatially and temporally calculated through remotely-sensed surface
parameter fields. Sellers et al. (1997) have shown by comparisons to field data that uncertainities in
the surface properties are in between 10 to 20%. The calculation of the most important land surface
parameters from the presented EFAI-NDVI dataset is performed with the MAPPER program in this
chapter. This program was provided by the SiB team and is applied here with several changes
included. An overview of the MAPPER program, the soil type and land cover classifications and the
relations of the land surface parameters to the NDVI is given in this chapter. A complete theoretical
approach to the generation of land surface parameters from remotely sensed NDVI can be found in
Sellers et al. (1996a and 1996b).
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5.2 Land Cover Classification

In order to generate global fields of land surface parameters (explained in section 5.5), biophysical
vegetation and soil properties are used in conjunction with the satellite derived EFAI-NDVI time-
series. These properties are available for certain vegetation types from surveys of the ecological liter-
ature. The very diverse global flora can be merged into simplified classification schemes. Land cover
classifications are found in a variety of classification schemes derived by conventional ground sur-
veys. Sellers et al. (1996a) has presented a global land cover classification with 12 biomes1, compos-
ited from two classifications by Kuchler (1983) and Matthews (1985). Over recent years, researchers
have turned to remotely-sensed data to improve the accuracy of datasets that describe the geographic
distribution of land cover. DeFries et al. (1998) has developed a classification decision tree to acquire
land cover maps by satellite remote sensing. The classification consists of 13 classes as shown in
Table 5.1.

Seasonal properties like start, length, end and amplitude of the growing season in combination
with surface temperature measurements served to distinguish the different vegetation types. Visible
and thermal band time-series of the AVHRR sensor were used and the results were checked at train-
ing sites by analyzing high resolution Landsat images. The overall accuracy of this remotely-sensed
land cover classification was estimated between 81-90% (dependent on land cover type). The hetero-
geneous nature of the earth surface at small scales is represented more accurately with the 8km
dataset than with the previous 1˚ by 1˚ global map, although multi-year datasets will have to be used
for more robust classifications in high spatial resolutions (DeFries et al. 1998).

1. SiB2 uses 9 land cover classes. However, for the calculation of land surface parameters, 12 land cover classes
are used, since all physical properties are still keyed to the (old) SiB 1 land cover classification .

Table 5.1: Land cover Classes by DeFries et al. (1998)

Class Description
%of land
surface

(Europe)
0 Water
1 Evergreen needleleaf forest 19.5
2 Evergreen broadleaf forest 0.0
3 Deciduous needleleaf forest 0.0
4 Deciduous broadleaf forest 2.6
5 Mixed forest 7.3
6 Woodland 7.5
7 Wooded grassland 2.8
8 Closed bushland or shrubland 0.6
9 Open shrubland 2.8
10 Grassland 17.2
11 Cropland 31.9
12 Bare Ground 4.9
13 Urban and built-upa

a. Mosses and lichens are merged into the same land cover class, since
reflective properties are very similar.

2.8
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The DeFries landcover map is reclassified here to be used with SiB2. The 12 SiB vegetation type
dependent properties are provided by Sellers et al. (1996b) for each of the 12 SiB biomes (See
Appendix A). The Sellers and DeFries classifications do not match for all land cover types, since
they were derived for different vegetation criterias, but a reasonable solution for this reclassification
is found by the author and shown in Table 5.2. (Map: see appendix B)

A problem results from the fact, that the DeFries does not include a class for Ice. It is suggested
here that for a proper estimation of surface properties over glacier and permanent snow cover, this
class is patched in from the soil map presented in section 5.3 This problem also becomes obsolete,
when a circulation model is used, which simulates snow cover effects independently of the pre-
scribed snow values by land cover class.A way more serious inconsistency is expected from merging
C3/C4 plant types by this reclassification. The DeFries land cover classes do not distinguish between
the two different photosynthesis types. It is this differentiation that makes the SiB classification very
sophisticated for use in biosphere models. Collatz et al. (1992) has presented a C4 photosynthesis
model that shows unique responses to environmental conditions when compared to C3 plants. The
carbon assimilation process is more efficient in C4 plants than in C3 plants at low CO2 concentrations
and C4 plants are also favored over C3 plants in warm, humid climates. Collatz et al. (1998) predicts
a serious degradatation in the global distribution of C4-grasses with a doubled CO2 scenario.

C4 plants are usually of short stature and do not fall in any of the tree classifications. C4 plants are
thought to be represented by the SiB classes 6, 7, 8 and 11. They each correspond to a similar land
cover class in the DeFries classification. But it is expected, that grass land cover from the DeFries
class 10 will contain a mixture of C3/C4 grasses and lead to a missclassification when simply merged
into the SiB vegetation class 12 (C3 grasses only!). However, Collatz et al. (1998) has shown that the
relative proportions of C4 - grasses will not be high in the European continent due to unfavorable
environmental conditions. Furthermore it is expected that changes caused by in land cover classifica-
tion are small, since land surface properties are first order dependent on NDVI and second order
dependent on the classification.

Table 5.2: Land cover classes used in SiB, matched with corresponding classes from the DeFries
classification (% of land surface are calculated within the European domain)

SiB
Class

DeFries
Class Description

%of
Land
surface

0 0 Water
1 2 Evergreen broadleaf forest (tropical rain forest) 0.0
2 4 Deciduous broadleaf forest (temperate forest) 2.6
3 5 Mixed deciduous broadleaf and evergreen needleleaf forest 7.3
4 1 Evergreen needleleaf forest (boreal forest) 19.5
5 3 Deciduous needleleaf forest (larix) 0.0
6 6 Broadleaf and C4-groundcover (drought woodland or savannah) 7.5
7 7 Grassland and shrub cover 2.8
8 8 Shrubs and groundcover (evergreen broadleaf woodland) 0.6
9 9 Shrubs and bare soil (evergreen broadleaf shrubland) 2.8
10 13 Tundra (Dwarf trees and shrubs) 2.8
11 12 Desert, bare soil 4.9
12 11, 10 Agriculture or C3 - grassland 49.2
13 no class Ice
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5.3 Soil Type Classification

Land surface parameterization schemes like the Simple Biosphere Model (SiB) consider different
soil layers for the calculation of the surface albedo and latent as well as sensible heat fluxes between
the ground surface and the atmosphere. In SiB2 there are three soil layers present, each one with dif-
ferent properties and thickness (Sellers et al. 1996b): the topmost layer, the root zone layer and the
recharge zone layer.

In an early version of the Simple Biosphere model, soil properties were calculated from the distri-
bution of the present vegetation (Sellers et al. 1996a), but it was found, that soil properties have
regional variations, which can be independent from vegetation type. Since 1978, a global soil map is
available from the Food and Agriculture Organization of the United Nations (FAO) in printed form.
It has been continuously updated and is available as digitized GIS data on CDROM (FAO 1995 -
Digital soil map of the world).

The digital soil map has the original FAO soil legend assigned, which defines 4930 different soil
classes, grouped in 26 major soils. The classification represents the soils found in the upper 30cm of
each grid cell. Each grid cell contains one dominant soil type and can have several subdominant soil
types also present in the same grid cell. The accuracy of the time-invariant 5’ by 5’ soil type dataset
is unknown, since no error estimates are indicated in the FAO documentation.

Figure 5.2: U.S.D.A. soil texture triangle, where dominant soil types are classified from the percentage
of present sand, silt and clay. (U.S.D.A. 1951)

Table 5.3: SiB soil texture
classes

Nr. Texture Type
1 Sand
2 Loamy sand
3 Sandy loam
4 Loam
5 Silt Loam
6 Silt
7 Silty clay loam
8 Clay loam
9 Sandy clay loam
10 Silty clay
11 Sandy clay
12 Clay
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Soil tension , soil wetness exponent B, hydraulic conductivity Ks and the soil porosity need
to be known by the Simple Biosphere Model in order to calculate the soil dependent energy and mass
fluxes (Theoretical background by Sellers et al. 1996a). Los (1998) has matched the seven soil tex-
ture types defined by Zobler (1986) with the physical parameters from Clapp and Hornberger (1978).

This classification isn’t used here, instead the percentage of clay (fine texture, d < 0.002mm), silt
(medium texture, 0.002 < d < 0.05mm) and sand (coarse texture, 0.05 < d < 2mm) for each of the
4930 texture classes is taken to reclassify the FAO soil type map based on the U.S. Dept. of Agricul-
ture texture triangle (U.S.D.A. 1951). The resulting soil type map (see appendix B) and the physical
parameters from Clapp and Hornberger (1978) (appendix A) are combined to produce time-indepen-
dent European fields of soil tension , soil wetness exponent B, hydraulic conductivity Ks and the
soil porosity . These soil properties vary spatially and the associated maps can be directly used to
drive the SiB2 soil scheme.

The 26 main soil types defined by the FAO are extended by the following land surface features.
These do not fit in the clay/silt/sand classification used by the U.S.D.A. texture triangle (Figure 5.2 ):

• Dunes and shifting sand
• Salt flats
• Rock debris or desert detritus
• Glaciers
• Inland water

As a solution, dunes and shifting sand are set to texture class 1 (sand), whereas the other surface
features are assigned to no texture class and soil properties are therefore missing at these sites. It
needs to be evaluated, how non-soil features are included in the calculation of surface properties.

ψs Θs

ψs
Θs
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5.4 Estimation of Net Primary Production through NDVI

Photosynthesis in terrestrial vegetation occurs in chloroplasts, which are cells contained in plant
leaves. The reaction process of photosynthesis can be summarized as follows:

(5.1)

Driven by light absorption, carbohydrates are synthesized and molecular oxygen is released dur-
ing the photosynthesis process. To provide this reaction with a continuous flux of the reactands,
leaves have to regulate the transport of air (with a fractional content of CO2) to the chloroplasts, such
that CO2 can be absorbed and O2 is released. The transport of these gases occurs through stomata in
the upper and lower epidemermial surfaces of plant leaves, whereas H2O is contained in the hydrated
mesophyll cells and is uptaken by the plant roots from the soil. A more precise description of the
photosynthesis process and leaf physiology can be found in Tucker and Sellers (1986) and Nultsch
(1996).

The incident Photosynthetically Active Radiation (PAR) is able to penetrate the upper epidermial
layer of leaves, which is largely transparent to PAR (Tucker and Sellers 1986). The PAR spectrum
reaches from 0.4 - 0.72um and contains several absorption maximums corresponding to the different
types of chlorophyll present in plant leaves (see section 2.1, Figure 2.1). Only a part of the incident
PAR is used by the plant leaves to drive the photosynthesis process, also known as Fraction of Photo-
synthetically Active Radiation absorbed by the plant leaves (FPAR). This distinct spectral absorption
behaviour of plant leaves for incident sunlight is measured through the remotely sensed NDVI.
NDVI can therefore be used to estimate FPAR. FPAR directly relates to the photosynthesis process
and serves to calculate vegetation parameters and the net primary productivity NPP (Sellers et al.
1997).

(5.2)

5.5 Calculation of the Surface Parameters from NDVI

5.5.1 SR - FPAR

The remotely-sensed NDVI represents the amount of green material in the vegetation canopy. For
horizontally homogeneous, closed vegetation, which consists almost exclusively out of green mate-
rial with a dark soil background, it was shown, that FPAR increases almost linearly with the Simple
Ratio (SR), as described in Hall et al. (1990) and Sellers et al. (1996b). SR can be transformed from
NDVI by the following relationship:

(5.3)

The linear relationship between the measured SR and FPAR can be derived, if two endpoints are
known. These two points are characteristic for each plant type; corresponding NDVI-SR values are
listed by vegetation class in Los (1998). The 98 percentile of the NDVI frequency distribution in a
specific vegetation class is assumed to represent vegetation with a maximum FPAR value (FPAR-
max=0.95) and the 2% NDVI is assumed to represent no vegetation with the minimum FPAR value
(FPARmin=0.01). Sellers et al. (1996b) describes the empirical relationship between SR and FPAR
(SR-FPAR model):

hv
CO2 H2O+ CH2O O2+→

NDVI F∝ PAR NPP∝

SR 1 NDVI+
1 NDVI–------------------------=
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Figure 5.3: Linear relationship between the single ratio (SR) and the fraction of absorbed photosyn-
thetically active radiation (FPAR)

(5.4)

SRmax,SRmin = Land cover dependent, corresponding to the 98% and 2% NDVI intervals

5.5.2 NDVI - FPAR

Goward et al. (1992) and Dye and Goward (1993) use another linear relationship for the FPAR calcu-
lation, which bases on NDVI instead of the simple ratio. Coincident NDVI values of FPAR were pre-
dicted for a 1984 global AVHRR NDVI dataset according to the equation:

(5.5)

Equation 5.5 was modified as follows by Sellers et al. (2000) to have land cover dependent character-
istics (referred to as NDVI-FPAR model):

(5.6)

where

NDVImax/min = Land cover dependent, correspond to the 98% and 2% NDVI intervals

5.5.3 SR-NDVI intermediate model

Both models were tested in comparison with ground surveys from FIFE (Hall et al. 1992), OTTER
(Angelici et al. 1991) BOREAS (Hall et al. 1993, Chen et al. 1997) and HAPEX-Sahel (Hanan et al.
1997). FPAR values were calculated with the NDVI-FPAR and the SR-FPAR model and compared
with the ground measurements and it was shown, that the NDVI-FPAR model performed worst with
significant overestimates, whereas the SR-FPAR model significantly underestimated FPAR (Los et
al. 2000). Different approaches for directly measuring FPAR at the ground and by estimating FPAR
through remote sensing can be found in Gower et al. (1999).

0.001
2%

98%

0.95FPAR

SR

FPARSR
SR SRmin–( ) FPARmax FPARmin–( )

SRmax SRmin–------------------------------------------------------------------------------------------- FPARmin+=

FPAR 1.06 NDVI 0.07–×=

FPARNDVI
NDVI NDV Imin–( ) FPARmax FPARmin–( )

NDV Imin NDV Imin–------------------------------------------------------------------------------------------------------------ FPARmin+=
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An intermediate model, which calculates the average of both models, shows a good fit to the
ground surveys (no significance at the 1% level) and is used in this work for the calculation of FPAR
from the remotely-sensed vegetation index.

(5.7)

5.5.4 Leaf area index and canopy greenness

Leaf area index (LAI) is another key variable, which is linked to remotely-sensed vegetation indices.
LAI stands for the size of one-sided area of leaves per unit of ground area. Dense vegetation has an
LAI of around 5 (5m2 leaves per m2 ground surface). generally vegetation indices approach a satura-
tion level asymptotically for LAI, ranging from 2 to 8, depending on the type of vegetation. Several
empirical relationships between have been discussed to estimate LAI from the various vegetation
indices (Tucker and Sellers 1986, Baret and Guyot 1991, Sellers et al. 1996b).

Sellers et al. (1996b) has used linear and logarithmic relationships, depending on vegetation type.
Comparisons with field experiments (FIFE, BOREAS) have indicated, that linear relationships were
invalid at the canopy level (since PAR extincts exponentially when passing through the canopy), but
did perform well spatially.

By calculating the vegetation cover fraction fV of a particular grid cell, the logarithmic FPAR-LAI
relationship will hold for the vegetated area (Los et al. 2000):

(5.8)

with
fV = Vegetation cover fraction

max(FPARt) = maximum measured FPAR over the year

Then, FPAR values for the vegetated fraction only are:

(5.9)

Green leaf area (LG,fv) for the vegetation cover fraction is expressed by the following logarithmic
relationship:

(5.10)

where
LG,max(i) = vegetation type dependent maximum green leaf area index (see appendix A)
FPARmax = Maximum FPAR value = 0.95

Therefore the green leaf area index (LG) for the total grid cell is:

(5.11)

It needs to be emphasized, that this FPAR-LG relationship only accounts for the green portion of
the vegetation canopy. A fraction of the vegetation canopy consists of nongreen (supportive) material
like stems (stem area index LS) and dead leaves (dead leaf area index LD). LS is assumed to be 0.076

FPAR
FPARSR FPARNDVI+

2-------------------------------------------------------=

f V max FPARt( ) 0.95⁄=

FPAR fv FPAR f v⁄=

LG fv, LG max, i( )
1 FPAR fv–( )log

1 FPARmax–( )log----------------------------------------------=

LG LG fv,= f V⋅
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for forests and 0.05 for grasslands and crops (see appendix A). During the vegetation growth period,
all leaves are assumed to be green. After the maximum leaf area is reached, dead leaves usually stay
within the canopy for one month, before falling off or being eaten. This assumption can be used to
calculate the fraction of dead leaves LD during the senescence period:

(5.12)

The total leaf area index LT for one grid cell is the sum of LG, LS and LD:

(5.13)

And the greenness fraction N1, which describes the amount of green phytoelements in the canopy in
relation to the total LAI, is then calculated as follows:

(5.14)

FPAR, LAI, LG, LT, N are therefore all time dependent variables calculated from remotely-sensed
NDVI. They are used in conjunction with soil and vegetation properties (by soil type and land cover
class) to calculate radiative transfers and stomatal resistances in the Simple Biosphere model.

5.5.5 Roughness length

Vegetation accounts for a large part of the turbulent exchange of momentum between the surface and
the atmosphere and also influences the transport of sensible and latent heat. The surface roughness
length2 is altered by vegetation type and activity and therefore also shows a seasonal variation. The
LT fields described above define the roughness length z0 by this simple exponential expression (Sell-
ers et al. 1996a):

(5.15)

with
z2 = canopy height [m], vegetation type dependent
bz = 0.91 (empirical)
hz = 0.0075 (empirical)

1. N is independent of fV.

2. The roughness length z0 has a strong influence on the aerodynamic transfer coefficient and shear stress.
Details of the aerodynamic transfer model can be found in Sellers et al. (1996a)

LD 0.5 LG f v t 1–,, LG f v t,,–( ) f V⋅=

LT LG LS LD+ +=

N
LG
LT
------=

z0 z2 1 bze
hzLT––( )=
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5.6 The MAPPER Program

The Simple Biosphere model by Sellers et al. (1996a) uses 37 surface parameters, of which eight are
time varying and the others remain static. These parameter fields are calculated by combining a digi-
tal land cover map (section 5.2) and soil type map (section 5.3) and remotely-sensed time-series of
EFAI-NDVI (chapter 4.) with tables of vegetation and soil properties (appendix A). The relation-
ships between the most important surface properties and NDVI are used as described in section 5.5.

The “preprocessing”1 of these fields is done with the program MAPPER, which was written in
Fortran 90 and provided by the SiB team. It was originally intended to produce global gridded 1˚ by
1˚ surface parameters in monthly time-steps. MAPPER routines are adjusted here, so that they now
suit for a correct estimation of land surface parameters in the European domain and can be driven
with the presented EFAI-NDVI and the carefully derived land cover and soil type maps described in
previous sections.

The following programming has been applied to the original MAPPER procedure, now called
EUMAPPER:

The new EUMAPPER program was applied to the full NDVI time-series from 1983 until 1993,
what resulted in a set of biophysical land surface properties, that will now have to be validated and
tested in the Simple Biosphere model (or any other similar model) to check their accuracy and
usability for regional climate studies in the European domain.

The main land surface properties like NDVI, FPAR, N, LT and z0 are presented in the appendix B
and C without further verification. For NDVI and FPAR, regional representations of the ISLSCP-II
datasets are shown for comparison.

1. The task is described as “preprocessing”, because the real surface-atmosphere interactions like mass, energy
and radiant fluxes will only be calculated interactively in the Simple Biosphere model itself, where MAPPER
generates the land surface properties as an offline program.

Table 5.4: Applied programming to MAPPER.

Type Feature
Changed 0.1˚ by 0.1˚ resolution (600 by 430 grid points)
Changed 10-day time-steps (36 steps per year)
Changed latitude-dependent calculation for the European domain
Fixed Y2k date problem for future time-series
Fixed leaf-transmission/reflectance parameter handshake between subroutines
Fixed soil properties calculation with 12 SiB soil classes
Added masking oceans and missing data pixels
Added binary interface for all time-varying parameters
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6. Summary and Discussion

This study directly estimated land surface vegetation from satellite observations for the years 1983
until 1993 and associated biophysical parameters were calculated from the generated EFAI-NDVI
dataset. Since remote sensing data is subject to large error sources, these have to be accounted for
prior to their use for climatological purposes. Simple assumptions can be made for discriminating
suspect NDVI values from more reliable data, what leads to the application of a Fourier-series
adjustment scheme presented in section 2.5. This adjustment scheme was applied to the GIMMS-
NDVI by Los (1998) and is not very effective here. The present dataset has a high spatial and tempo-
ral resolution for regional use and is not subsampled, thus includes more unreliable data, what ren-
ders the detection of the correct vegetation signal very difficult. It is shown in sections 3.4 to 3.6 that
a few modifications can be made to the original Fourier adjustment algorithm to adapt its use to this
regional NDVI dataset. Especially of importance is the finding that outliers in NDVI time-series do
not always result in decreased values. Positive outliers mainly occur outside the growing seasons,
where NDVI is supposed to be low and they therefore have a high impact. This special case has not
been considered before, when coarse-resolution vegetation datasets were generated by Los (1998),
Los et al. (2000).

However, several anomalies in NDVI time-series are not covered well with the enhanced Fourier
adjustment algorithm (section 3.7). High latitude, boreal forests and crops have distinct time-series,
that do not represent the assumed seasonal trend serving as the basis for the applied correction
scheme. It needs to be evaluated in the future whether a vegetation- and latitude-dependent correc-
tion algorithm will better allow to detect the true seasonal behavior of vegetation for all landscapes in
Europe. With the current state of the correction scheme, an overestimation of the NDVI in summer
months and at the end of the growing season is possible, especially for vegetation with a high season-
ality in high latitudes. Visual inspections of time-series show that the seasonal behavior of land sur-
face vegetation in winter and spring is represented well.

Vegetation is very heterogeneous at canopy level, but recent findings by Justice et al. (1985), Los
(1998) and DeFries et al. (1998) support the use of a few land cover classes that differ in their sea-
sonal behavior. With the present EFAI-NDVI, seasonal characteristics are detectable for the 12 SiB
land cover classes (section 4.2) and can be trusted, since their magnitude is high in comparison to
possible error sources. In addition to seasonal variability, inter-annual change in the vegetation signal
occurs in response to natural and anthropogenic forcings through changing environmental condi-
tions. The year-to-year variations have a higher confidence than a detectable (possible CO2-
induced1) trend in the overall dataset (section 4.3), because naturally occuring environmental
changes of 2-4 years in length are of reasonable magnitude. The hypothesis at the beginning of this
report suggested a high resolution vegetation dataset for regional climate modelling in favor of the
currently available coarse resolution vegetation parameterizations. Although finer temporal scales
certainly allow to better discriminate a proper vegetation signal from an error-contaminated time-
series (section 2.6), this assumption does not necessarily justify a finer spatial grid. Some regions
show substantial vegetation variability over short distances (less than 50km), where other areas are
successfully approached by the conventional 1˚ by 1˚ resolution. This finding does need further
examination, because SVATS for regional climate modelling will have to deal with either coarse or
high resolution datasets in the future, what substantially influences their need for computing power.

1. See Myneni et al. (1997)
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As presented in section 5.5, land surface parameters are calculated through simple relationships
from NDVI. This connection is central to all currently used large-scale LSPs. The NDVI-FPAR,
FPAR-LAI and the LAI-z0 models have been validated recently in field experiments and are proved
to be reliable if NDVI is provided accurately. The correct estimation of NDVI is therefore a very
important task in the generation consistent fields of land surface properties for climatological
research. Sophisticated parameterizations of land surface processes in SVATS like SiB would not be
possible without satellite remote sensing. Ground measurements of land surface properties are either
not available for wide areas, show inconsistencies or lack of temporal resolution.

Satellite data will continue to to be the only feasible way to obtain updates about the state of glo-
bal vegetation in a timely fashion. Almost all remotely-sensed vegetation datasets base on measure-
ments by the AVHRR instrument (section 2.2), which was used on several NOAA polar orbiting
satellites during the last 20 years. An improvement is expected from the Moderate-resolution Imag-
ing Spectroradiometer (MODIS) - one of five state-of-the-art instruments onboard the TERRA satel-
lite, that was launched in December 1999 by NASA. MODIS is supposed to expand the time-series
of global vegetation monitoring and will improve the ability to better detect vegetation on the land
surface as well as phytoplankton activity in oceans with its 36 sharp bands in the visible and infrared
spectrum. It has better ability to detect atmospheric disturbances like aerosols and water vapor and
also has an improved resolution of 250-500m for local vegetation studies. Future biospheric research
will profit from the quality of MODIS vegetation data and the sources and sinks of carbon dioxide in
response to natural and anthropogenic climate changes are expected to be better understood and esti-
mated.

The EFAI-NDVI dataset presented in this study should be seen as a basis for specifying land sur-
face processes and for improving coupled biosphere - atmosphere models in the European domain.
As a possible future application, the presented land surface parameter fields will have to be tested in
sensitivity experiments which show regional climate response to altered vegetation properties. The
inter-annual variations within the presented vegetation dataset are reflecting actual responses to envi-
ronmental changes. Experiments involving this dataset should be run to better understand hydrologi-
cal, radiative and chemical feedback mechanisms in the soil-vegetation-atmosphere system.
Furthermore, the presented multi-year dataset needs to be compared to actual climate records as tem-
perature and precipitation data and also needs to be  validated with other vegetation datasets.
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Abbreviations

AGCM Atmospheric General Circulation Model
AVHRR Advanced Very High Resolution Radiomete
BATS Biosphere Atmosphere Transfer Scheme
BOREAS Boreal Ecosystem-Atmosphere Study
BRDF Bidirectional Reflectance Distribution Function
CHRM Climate HRM
EFAI-NDVI European Fourier-Adjusted and Interpolated NDVI
ENSO El Niño-Southern Oscillation
EOS Earth Observing System
EOSDIS Earth Observing System Data and Information System
ETH Eidgenössische Technische Hochschule
FAO United Nations Food and Agriculture Organisation
FASIR Fourier Adjustment, Solar zenith angle correction, Interpolation and Reconstruc-

tion of NDVI
FFT Fast Fourier Transform
FIFE First ISLSCP Field Experiment
FPAR Fraction of PAR absorbed by the green part of the vegetation
GAC Global Area Coverage
GCM General Circulation Model
GIMMS Global Inventory, Monitoring and Modeling System
GIS Geographic Information Systems
GSFC Goddard Space Flight Center
GVI Global Vegetation Index
HRM High Resolution Model
IDL Interactive Data Language
IFOV Instantaneous field-of-view
ISLSCP International Satellite Land Surface Climatology Project
LAI Leaf Area Index
LSP Land Surface Parameterization
MODIS Moderate Resolution Imaging Spectroradiometer
MSAVI Modified SAVI
MSS Landsat Multispectral Scanner
MVC Maximum-value composite
NASA National Aeronautics and Space Administration
NDVI Normalized Difference Vegetation Index
NIR Near Infrared (wavelength interval)
NOAA National Oceanic and Atmospheric Administration
NPP Net Primary Production
OTTER Oregon Transect Ecosystem Research
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PAR Photosynthetically Active Radiation
POES Polar-orbiting Operational Environmental Satellite
RAMS Regional Atmospheric Modeling System
RCM Regional Climate Model
SAVI Soil Adjusted Vegetation Index
SiB Simple Biosphere model
SPOT Satellite pour l’Observation de la Terre
SR Simple Ratio
SST Sea Surface Temperature
SVATS Soil-Vegetation-Atmosphere Transfer Scheme
TOMS Total Ozone Mapping Spectrometer
U.S.D.A. United States Deptartment of Agriculture
VIS Visible (wavelength interval)
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Appendix



A. Tables

Table A.1: Physical soil properties: soil tension , soil wetness exponent B, hydraulic conductivity Ks
and the soil porosity for each of the 12 USDA soil texture classes (see chapter 5). Soil class dependent
properties after Clapp and Hornberger (1978).

Nr. Class Texture Type B Ks
1 S Sand 5.39 -0.15 7.0 0.45
2 LS Loamy sand 5.30 -0.57 7.2 0.49
3 SL Sandy loam 5.30 -0.57 7.2 0.49
4 L Loam 4.90 -0.07 34.7 0.44
5 SiL Silt loam 4.38 -0.02 156 0.41
6 Si Silt 4.05 -0.04 176 0.40
7 SiCL Silty clay loam 7.12 -0.09 6.3 0.42
8 CL Clay loam 10.4 -0.06 2.2 0.43
9 SCL Sandy clay loam 8.52 -0.36 2.5 0.48
10 SiC Silty clay 7.75 -0.15 1.7 0.48
11 SC Sandy clay 10.4 -0.17 1.0 0.49
12 C Clay 11.4 -0.19 1.3 0.48

Table A.2: Vegetation class dependent morphological parameters used in MAPPER. (Section 7.4). Class=
SiB vegetation class, zc=inflection height for leaf-area density, lw=leaf width, ll=leaf length,
LG,max=maximum Leaf Area Index, LS=Stem Area Index, NDVImax=maximum NDVI in the 98% interval,
NDVImin=minimum NDVI in the 2% interval, as,v=soil visible reflectance, as,n= soil near-infrared
reflectance. Class 13 is the ice class and was not used here.

Class zc lw ll LG,max LS NDVImax NDVImin as,v as,n
1 28.2 0.050 0.100 7.0 0.08 0.6181 0.03385 0.110 0.225
2 17.0 0.080 0.150 7.0 0.08 0.6868 0.03385 0.110 0.225
3 15.0 0.040 0.100 7.5 0.08 0.6868 0.03385 0.110 0.225
4 10.0 0.001 0.055 8.0 0.08 0.6868 0.03385 0.110 0.225
5 10.0 0.001 0.040 8.0 0.08 0.6868 0.03385 0.110 0.225
6 0.55 0.010 0.300 5.0 0.05 0.6181 0.03385 0.110 0.225
7 0.55 0.010 0.300 5.0 0.05 0.6302 0.03385 0.110 0.225
8 0.55 0.010 0.300 5.0 0.05 0.6181 0.03385 0.150 0.250
9 0.3 0.003 0.030 5.0 0.05 0.6302 0.03385 0.300 0.350
10 0.35 0.010 0.300 5.0 0.05 0.6302 0.03385 0.110 0.225
11 0.55 0.010 0.300 5.0 0.05 0.6302 0.03385 0.300 0.350
12 0.55 0.010 0.300 6.0 0.05 0.6302 0.03385 0.100 0.150
13 0.55 0.010 0.300 5.0 0.01 0.6302 0.03385 0.300 0.350

ψs
Θs

ψs Θs



B. Classifications

Figure B.1: Land cover classification map derived for the 12 SiB classes. Ice class 13 is not derived in this
map. The map has a spatial resolution of 0.1˚ by 0.1˚.

Water
1 Evergreen broadleaf forest
2 Deciduous broadleaf forest
3 Mixed broadleaf & needleleaf forest
4 Evergreen needleleaf forest
5 Deciduous needleleaf forest
6 Broadleaf and C4-groundcover
7 Grassland and shrub cover
8 Shrubs and groundcover
9 Shrubs and bare soil
10 Tundra
11 Desert, bare soil
12 Agriculture or C3 - grassland



Figure B.2: The topmost dominant soil type described as %sand (red), %silt (green) and %clay(blue). The
white areas within the landsurface are either rock, salt, ice or inland water and are therefore not described in
this classification. The map is shown in a 0.1˚ by 0.1˚ resolution.



Figure B.3: The European soil map is derived from the FAO digital soil map for the 12 SiB soil classes. Ice,
Salt, Rock and inland water areas are set to missing (white) and are not considered at this time. The spatial
resolution is 0.1˚ by 0.1˚.
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C. Datasets

Figure C.1: 0.1˚ by 0.1˚ EFAI-NDVI (left) shown in comparison to the pre-released 1˚ by 1˚ FASIR-NDVI
(right). The EFAI-NDVI is sampled for one month, since it has a temporal resolution of 10 days. top = Janu-
ary 1987, bottom = April 1987.
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Figure C.2: 0.1˚ by 0.1˚ EFAI-NDVI (left) shown in comparison to the pre-released 1˚ by 1˚ FASIR-NDVI
(right). The EFAI-NDVI is sampled for one month, since it has a temporal resolution of 10 days. top = July
1987, bottom = October 1987
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Figure C.3: 0.1˚ by 0.1˚ mean EFAI-NDVI (left) shown in comparison to the pre-released 1˚ by 1˚ mean
FASIR-NDVI (right). The data was temporally averaged for the full time-series.

Figure C.4: Temporal standard deviation for the 0.1˚ by 0.1˚ EFAI-NDVI (left) and the 1˚ by 1˚ FASIR-NDVI
(right). The full time-series was considered for both datasets.



Figure C.5: Successive corrections are applied to the 1985 Land Pathfinder NDVI dataset.The Fourier adjust-
ment shows most effect in spring and summer  for mid and high latitudes. The interploation of missing data
during winter can be seen the January dataset.
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Figure C.6: European fields of FPAR calculated from EFAI-NDVI (left) in comparison to pre-released
ISLSCP-II FPAR fields from the FASIR-NDVI (right). The top datasets show January 1987, the bottom
datasets show April 1987.
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Figure C.7: European fields of FPAR calculated from EFAI-NDVI (left) in comparison to pre-released
ISLSCP-II FPAR fields from the FASIR-NDVI (right). The top datasets show July 1987, the bottom datasets
show October 1987.
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Figure C.8: Fields of Total Leaf Area Index LT for the months a) January, b) April, c) July and d) October cal-
culated from the  1987 EFAI-NDVI dataset. The LT fields were assigned differently for each land cover class
as described in chapter 7.
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Figure C.9: Canopy Greenness Fraction derived from the 1987 EFAI-NDVI dataset as described in chapter 7.
a) January, b) April, c) July and d) October.
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Figure C.10: Roughness length, derived from the 1987 EFAI-NDVI by land cover class. a) January, b) April,
c) July and d) October. The influence of snow is not considered at this point.
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