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[1] Simulations of the global water and carbon cycle are sensitive to the model representation
of vegetation phenology. Current phenology models are empirical, and few predict
both phenological timing and leaf state. Our previous study demonstrated how satellite
data assimilation employing an Ensemble Kalman Filter yields realistic phenological
model parameters for several ecosystem types. In this study the data assimilation framework
is extended to global scales using a subgrid‐scale representation of plant functional
types (PFTs) and elevation classes. A reanalysis of vegetation phenology for 256 globally
distributed regions is performed using 10 years of Moderate Resolution Imaging
Spectroradiometer (MODIS) fraction of photosynthetically active radiation (FPAR)
absorbed by vegetation and leaf area index (LAI) data. The 9 · 108 quality screened
observations (corresponding to <1% of the globally available MODIS data) successfully
constrain a posterior PFT‐dependent phenological parameter set. It reduces the global FPAR
and LAI prediction error to 20.6% and 14.8%, respectively, compared to the prior prediction
error. A 50 year long (1960–2009) daily 1° × 1° global phenology data set with a mean
FPAR and LAI prediction error of 0.065 (−) and 0.34 (m2 m−2) is generated. Temperate
phenology is best explained by a combination of light and temperature. Tropical evergreen
phenology is found to be largely insensitive to moisture and light variations. Boreal
phenology can be accurately predicted from local to global scales, while temperate and
mediterranean landscapes might benefit from a better subgrid‐scale PFT classification
or from a more complex canopy radiative transfer model.
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1. Introduction

[2] Land surface vegetation is an interactive part of the
climate system. Leaf transpiration influences cloudiness,
temperature and moisture patterns of the atmosphere on the
synoptic to climatological timescale [Heck et al., 1999;
Tsvetsinskaya et al., 2001; Lu et al., 2001; Kim and Wang,
2005; Betts and Viterbo, 2005; Betts et al., 2007]. Vegeta-
tion biomass acts as a sink (or source) for the atmospheric
carbon budget on a seasonal to centennial timescale [Keeling
et al., 1996; Kramer et al., 2000; Schaefer et al., 2005; Piao
et al., 2007; Körner, 2003]. The two processes regulating
water loss and carbon uptake are coupled [Schimel et al.,
1997; Sellers et al., 1997] and both depend on leaf stomatal
opening and leaf presence. Leaf physiology controls stomates
and is largely driven by local scale and short term weather
events like the diurnal variability of temperature and radia-
tion [Jarvis, 1976; Law et al., 2002; Larcher, 2003]. Leaf
phenology on the other hand describes the timing of leaf

appearance, presence and senescence and can be linked to
the large scale seasonal to interannual climatic variability
[Scheifinger et al., 2002;Menzel et al., 2006; Penuelas et al.,
2009; Körner and Basler, 2010].
[3] Leaf physiology and leaf phenology are treated sepa-

rately in most land surface models (LSMs) used to simulate
the terrestrial water and carbon cycle. While several mecha-
nistic formulations of plant physiological processes have
been developed during the last three decades [Jarvis, 1976;
Farquhar et al., 1980], highly empirical representations of
plant phenology are used in LSMs [Cox, 2001; Foley et al.,
1996; Levis and Bonan, 2004; Jolly et al., 2005]. In several
LSMs, phenology is used as a means to scale leaf level
physiological processes to the canopy level [Sellers et al.,
1996b, 1997]. Phenology models used in LSMs simulate a
continuous biophysical state of vegetation at the landscape
scale rather than the timing of species‐specific and local‐scale
events like flowering or bud burst. The latter information is
available from long term phenological observations that are
mostly confined to temperate climate zones [van Vliet et al.,
2003; Rutishauser et al., 2007].
[4] However, the largest phenological model deficiencies

are found for subtropical and mediterranean vegetation
because model parameters are often generalized from tem-
perate vegetation to global scales [Stöckli et al., 2008b].
Models often simulate a temporal mismatch in spring green
up in the order of 1–2 months and show unrealistic drought
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responses of LAI that have adverse effects on the predicted
terrestrial water and carbon fluxes [Kucharik et al., 2006;
Randerson et al., 2009]. The ultimate goal to overcome such
deficiencies is to further develop LSMs with a mechanistic
terrestrial carbon‐nitrogen cycling. They allow the coupling
of leaf phenology and leaf physiology by use of for instance a
prognostic carbon gain‐loss formulation [Thornton et al.,
2002; Arora and Boer, 2005].
[5] Satellite‐based data assimilation can serve as an inter-

mediate step to constrain unrealistic parameters of empirical
phenology models and it might be used to augment the
realism of terrestrial biosphere models [Demarty et al., 2007;
Mahadevan et al., 2008; Rüdiger et al., 2010; Knorr et al.,
2010; Rayner, 2010]. In the work of Stöckli et al. [2008b]
we presented a local‐scale data assimilation framework
based on the Ensemble Kalman Filter (EnKF) [Evensen,
2003, 2009] that was able to mitigate several phenology
model deficiencies by conditioning empirical model param-
eters with satellite‐based phenological observations.
[6] Our local‐scale data assimilation framework is however

unrealistic for the prediction at the regional scale due to the
increase of landscape heterogeneity. A single set of param-
eters representing a mixed vegetation signal of a specific
location cannot be used at another location with a different
vegetation composition. A global‐scale prediction would
hence require a cumbersome parameterization procedure for
each grid point. In order to be useful on global scale, our
previous framework needs to be extended. The main question
is then how to select the bins needed to disaggregate global
phenology into a discrete set of functional classes. It was
chosen here to split the mixed landscape into a discrete set of
plant functional types (PFTs) and elevation classes (HGTs)
for the following reasons. In earth system models the terres-
trial biochemical cycle is often decomposed on the subgrid‐
scale by using PFTs [Sitch et al., 2003; Kucharik et al., 2006;
Thornton et al., 2007]. In comparison to biomes PFTs group
plant species with similar physiological, structural and phe-
nological traits. Satellite remote sensing data can be used to
derive PFTs globally [Bonan, 2002; Lawrence and Chase,
2007]. However, any satellite‐based classification is ulti-
mately constrained by a incomplete set of functional traits
[Ustin and Gamon, 2010] that only account for optical veg-
etation properties. Elevation classes are used since recent
findings show that for instance a 100 m elevation difference
can shift the leaf‐out date by several days [Fisher et al., 2006]
which requires a subgrid‐scale treatment of the forcing
weather data in a global prediction where grid cells can
include substantial variability in elevation.
[7] The aim of this study is to create a globalMODIS‐based

reanalysis data set of vegetation phenology. It should provide
a data assimilation and modeling framework to earth system
modelers with the capability to assimilate and predict FPAR
and LAI of natural vegetation types. We firstly would like to
evaluate whether the chosen data assimilation scheme allows
to constrain a PFT‐dependent parameter set with 10 years
of assimilated MODIS data. We secondly would like to test
whether the chosen phenology model, the PFT and HGT
classification and the final satellite‐constrained parameter set
are suited to yield realistic global‐scale phenological pre-
dictions. In section 2 the prognostic phenology model is
presented, followed by a description of the data assimilation
system. Global‐scale data assimilation experiments are then

performed to constrain a PFT‐dependent phenological param-
eter set. This parameter set is used to predict global, regional
and local FPAR and LAI. A global phenological reanalysis
data set covering 50 years (1960–2009) is finally presented.
Analysis of observed and predicted FPAR and LAI followed
by a thematic discussion then evaluate the soundness of our
method and data set.

2. Methods

2.1. Phenology Model

[8] The GSI (Growing Season Index) by Jolly et al. [2005]
diagnoses the state of vegetation by use of three major cli-
matic drivers serving as surrogates for the underlying con-
trols on vegetation phenology: low temperatures, evaporative
demand, and photoperiod. Stöckli et al. [2008b] and this study
extended the GSI model into a prognostic phenology model
that predicts the biophysical vegetation states FPAR and LAI.
2.1.1. Theory
[9] The GSI (−) is the product of three environmental

factors f (T ), f (L) and 1 − f (W),

GSI ¼ f Tð Þ � f Lð Þ � 1� f Wð Þð Þ ð1Þ

f xð Þ ¼
0 if x � xmin
x�xmin

xmax�xmin
if xmin < x < xmax

1 if x � xmax

8<
: ; ð2Þ

where x = {T , L, W} are multiday running mean averages of
the minimum daily temperature Tm (K), the mean daily global
radiation Rg (W m−2) and the mean daily vapor pressure
deficit vpd (mb), using averaging times tT , tL and tW (days).
Tmax, Tmin, Lmax, Lmin, Wmax and Wmin are maximum and
minimum T , L and W, respectively. L can alternatively be
driven by photoperiod (day length) instead of global radiation
as suggested by Jolly et al. [2005] and scientifically outlined
by Körner [2006].
[10] The prognostic phenological state P (−) can be related

to the biophysical state FPAR (−) by use of a linear rela-
tionship [Sellers et al., 1996a; Los et al., 2000],

P ¼ f FPARð Þ ð3Þ

where f (x) is given in equation (2), FPARmin and FPARmax

are the minimum and maximum FPAR corresponding to the
least and most developed state of vegetation. The growth
vector ∂GSI/∂t (−) then gives the direction and rate of leaf
growth or decay used to calculate the change in FPAR with a
logistic growth model,

@GSI

@t
¼ GSI� P ð4Þ

@FPAR

@t
¼ � � @GSI

@t
� P 1� Pð Þ: ð5Þ

As presented by Dickinson et al. [2008] growth and senes-
cence can be modeled as two separate processes. We choose
a different maximum rate for leaf growth gg (day

−1) and leaf
senescence (gd) instead,

� ¼ �g if @GSI � 0
�d if @GSI < 0

�
: ð6Þ
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According to Sellers et al. [1996a] and Los et al. [2000] the
biophysical state LAI (m2 m−2) can be related to FPAR by
use of the Monsi‐Saeki light interception model based on
Beer’s law for LAI, respectively [Monsi and Saeki, 2005],

@LAI

@t
¼ @LAI

@FPAR

@FPAR

@t
ð7Þ

LAI ¼ ln 1� FPAR=fvð Þ
ln 1� FPARsatð Þ LAImaxfv; ð8Þ

where fv (−) is the vegetation fraction and FPARsat (−) is
the FPAR value reached at the maximum leaf area index
LAImax (m

2 m−2).
2.1.2. Implementation
[11] A semi‐implicit numerical scheme is used for the time

integration. In comparison to Stöckli et al. [2008b] each grid‐
scale FPAR and LAI prediction is composed of subgrid‐scale
predictions covering h = 1 … nHGT elevation classes (HGT)
and p = 1 … nPFT plant functional type (PFT) classes.
Meteorological forcing is downscaled by HGT. Phenological
model parameters are decomposed by PFT. The prognostic
states are therefore decomposed by both HGT and PFT. They
can be identified by their superscript time indices t and t + 1 in
the following equations. GSI is diagnosed at every time step,

GSI p; hð Þ ¼ f T tþ1 p; hð Þ� � � f Ltþ1 p; hð Þ� � � 1� f W tþ1 p; hð Þ� �� �
;

ð9Þ

with new prognostic values of xt+1 = {T , L,W} that depend on
their previous values xt, on the current elevation‐dependent
weather forcing y = {Tm, Rg, vpd} and on the PFT‐specific
time averaging parameters z = {tT , tL,tW},

xtþ1 p; hð Þ ¼ e�1=z pð Þxt p; hð Þ þ �1� e�1=z pð Þ�y hð Þ: ð10Þ

Leaf growth DFPAR depends both on the new phenological
state GSI and the previous biophysical state FPAR,

P p; hð Þ ¼ f FPARt p; hð Þð Þ ð11Þ

DGSI p; hð Þ ¼ GSI p; hð Þ � P p; hð Þ ð12Þ

DFPAR p; hð Þ ¼ � p; hð Þ �DGSI p; hð Þ � P p; hð Þ 1� P p; hð Þð Þ
ð13Þ

� p; hð Þ ¼
�g pð Þ if DGSI p; hð Þ � 0

�d pð Þ if DGSI p; hð Þ < 0

8<
: ð14Þ

FPARtþ1 p; hð Þ ¼ FPARt p; hð Þ þDFPAR p; hð Þ: ð15Þ

Compared to Stöckli et al. [2008b] LAI is a diagnostic vari-
able derived from the prognostic state FPAR at each time
step,

LAI p; hð Þ ¼ ln 1� FPARtþ1 p; hð Þ=fv pð Þ� �
ln 1� FPARsat pð Þð Þ

LAImax pð Þfv pð Þ:
ð16Þ

[12] Grid‐scale FPAR and LAI are calculated by area
weighted summation (ap and ah are fractional areas for each
PFT and HGT class) of the PFT‐ and HGT‐specific FPAR
and LAI states:

FPAR ¼
XnHGT
h¼1

XnPFT
p¼1

ahapFPAR p; hð Þ ð17Þ

LAI ¼
XnHGT
h¼1

XnPFT
p¼1

ahapLAI p; hð Þ: ð18Þ

[13] The following numerical constraints are used:
P(1 − P) = max(P(1 − P),0.01); fv = 1.0 since the vegetation
fraction is represented by the fractional areas ap of each PFT;
FPARsat = min(max(FPARsat, 0.001),0.999). Natural loga-
rithms in equation (16) are constrained to be larger than 0.0
and lower than 1.0.

2.2. Data Assimilation Model

[14] Ensemble data assimilation is the key method of this
study. It enables to find realistic values as well as their
uncertainties for a large set of unknown PFT‐specific model
parameters in the above equations by use of a global set of
satellite observations.
2.2.1. Theory
[15] The Ensemble Kalman Filter (EnKF) after Evensen

[1994, 2003] is applied in this study with modifications for
joint state and parameter estimation following Moradkhani
et al. [2005] and Evensen [2009]. The EnKF conditions N
prior model states and parameter ensemble members with m
observations yielding a posterior model state and parameter
ensemble,

Aa ¼ Af þK D�HAf
� �

; ð19Þ

where Af is the ensemble matrix containing the prior model
states and parameters. They are updated to Aa when new
observations D become available. H is the operator relating
observed to model states and parameters, D − HAf is the
matrix of innovation andK is theKalman gain (for details, see
Evensen [2003]). A is a matrix holding N ensemble members
of the vector y with n states x and parameters �. D is the
matrix holding N ensemble members of the vector d with m
observations,

A ¼  1;  2; . . . ;  Nð Þ 2 <n�N ;  ¼ x; �ð Þ ð20Þ

D ¼ d1; d2; . . . ; dNð Þ 2 <m�N ð21Þ

 0
i ¼ x0; �0

� �þ !i; i ¼ 1 . . .N ; ! � N 0;V 0
 

� �
ð22Þ

di ¼ d þ �i; i ¼ 1 . . .N ; � � N 0;Vdð Þ: ð23Þ

[16] The state and parameter ensemble members yi
0 are

perturbed at the beginning of themodel integration by use of a
Gaussian distribution with mean 0 and initial variance Vy

0 .
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The observation ensemble members di are perturbed with
mean 0 and with the observation variance Vd at each analysis
time step.
2.2.2. Implementation
[17] States and parameters making up the Matrix A are

defined in Table 1 with initial (prior) values similar to those
given by Jolly et al. [2005] and variances encompassing the
orders of magnitude found in the global climate system.
[18] Directly assimilating all global 1 km MODIS FPAR

and LAI observations would yield a Matrix D with dimen-
sions of O(109) observations × O(103) ensemble members
which is computationally very expensive to solve with the
EnKF framework. Therefore, superobservations d̂ for each
model grid cell are created from observations dowith o = 1…
nobs:

wo ¼ 1=Vdo ð24Þ

âh ¼
P

woahoP
wo

ð25Þ

âp ¼
P

woapoP
wo

ð26Þ

V̂d ¼
P

w2
oVdoP
w2
o

ð27Þ

d̂ ¼
P

wodoP
wo

ð28Þ

D ¼ d̂i þ �i; i ¼ 1 . . .N ; � � N 0; V̂d

� �
; ð29Þ

where d̂ and V̂ d are the grid‐scale superobservation and its
uncertainty, and ah and ap are the grid‐scale fractional HGT

and PFT areas of the superobservation. By use of the
weighting scheme wo superobservations contain the highest
quality satellite data within each grid cell.
[19] The observation operator HA is created by linearly

aggregating modeled FPAR and LAI weighted by observed
elevation distribution âh and PFT distribution âp for each
superobservation:

HA′i ¼
X
h

X
p

âhâp xi p; hð Þ � x p; hð Þð Þ; i ¼ 1 . . .N ð30Þ

HA′ ¼ HA′

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
h

P
p âhâpvar x p; hð Þð Þ

q
var HA′ð Þ ð31Þ

HA ¼ HA′þ
X
h

X
p

âhâpx p; hð Þ; ð32Þ

where x = [FPAR, LAI] is predicted by the prognostic phe-
nology model. Ensemble perturbationsHA′ are rescaled with
the state variance because the weighed addition of ensemble
members by definition deflates the ensemble variance when
not all weights are equal.
[20] Aa is calculated by use of the square root implemen-

tation of the EnKF scheme as presented by Evensen [2004,
section 7.3, equations (69)–(93)] using the low‐rank pseu-
doinverse calculation because the observation count in our
analysis will always exceed the ensemble size. Overdispersal,
overconfidence and nonphysical drift of the posterior state
and parameter ensemble is taken care of by applying:

Aa ¼ Aa � A
a� �
min �

var Af
� �

var Aað Þ ; 1:0
 !

þ A
a ð33Þ

Aa ¼ Aa � A
a� �
max �

var Af
� �

var Aað Þ ; 1:0
 !

þ A
a ð34Þ

Aa ¼ Aa þ Amin � A
a� �

when A
a
< Amin ð35Þ

Aa ¼ Aa þ Amax � A
a� �

when A
a
> Amax; ð36Þ

where a = 1.0 is the upper limit for the ensemble dispersal,
relative to the prior ensemble variance, b = 0.1 is the lower
limit for the ensemble shrinkage, relative to the prior
ensemble variance, and Amin and Amax are the lower and
upper bounds for the ensemble mean as given in Table 1. It is
important to note that the latter physical limits do only move
the ensemblemeanwithout modifying the ensemble variance.
[21] Aa is a global solution that updates all local states and

parameters with a single global analysis. This is needed to
estimate a single global set of parameters. The presented
assimilation scheme can also be used for state estimation.
Each local analysis then uses a spatial influence function that
updates only states close to the observations. Such a local
analysis for state estimation could follow the global analysis
for parameter estimation as for instance outlined by equations
(80) and (81) in the work of Evensen [2003].

Table 1. State and Parameter Vector y, Initial Values y0, Initial
Variances Vy

0, Minimum and Maximum Bounds for the Ensemble
Mean

Variable y0 Vy
0 Minimum Maximum Units

States x
FPAR 0.5 0.5 0.0 1.0 ‐
LAI 2.5 1.0 0 10 m2 m−2

T 0.25 200 350 K
L 10 0 1000 W m−2

W 0.01 0 100 mb

Parameters �
Tmax 280 50 100 350 K
Tmin 265 50 100 350 K
Lmax 150 1000 −100 500 W m−2

Lmin 50 1000 −100 500 W m−2

Wmax 30 50 −25 50 mb
Wmin 10 50 −25 50 mb
FPARmin 0.05 0.01 0.0 1.0 ‐
FPARmax 0.95 0.01 0.0 1.0 ‐
gg 0.33 0.01 0.05 1.0 days−1

gd 0.33 0.01 0.05 1.0 days−1

LAImax 7.0 0.5 0 10 m2 m−2

FPARsat 0.95 0.01 0.5 1.0 ‐
tT 21 10 5 100 days
tW 21 10 5 100 days
tL 21 10 5 100 days
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2.3. Data

2.3.1. Meteorological Forcing Data
[22] Daily minimum temperature Tm, daily mean global

radiation Rg and daily mean vapor pressure deficit vpd serve
as forcing weather data for the prognostic phenology model.
1° × 1° gridded ECMWF ERA 40 [Uppala et al., 2005] are
used during 1958–1989 and ERA Interim [Berrisford et al.,
2009] are used during 1990–2006. The ensemble mem-
bers of Tm, Rg and vpd are stochastically perturbed at each
grid point and at each time step with a variance of 0.025 K,
1.0 W m−2 and 0.005 mb, respectively.
[23] The grid‐scale 1° × 1° ERA 40 and ERA Interim data

are the starting value for calculating Tm, vpd and Rg for each
subgrid‐scale elevation class. Subgrid‐scale Tm is derived
from grid‐scale Tm by use of a lapse rate of −0.6 K 100 m−1;
subgrid‐scale vpd is calculated by keeping the mixing ratio
constant with height and applying the subgrid‐scale Tm to
the vpd calculation. Subgrid‐scale Rg increases by 0.3 Wm−2

100 m−1 (mainly due to decreased atmospheric optical
thickness at greater elevation). The local‐scale experiments
carried out at the four FLUXNET sites are driven by the grid‐
scale 1° × 1° ERA 40 and ERA Interim weather forcing
downscaled to the single elevation class of the respective
FLUXNET site.
2.3.2. Satellite Observation Data
[24] TERRA MODIS FPAR and LAI (MOD15A2,

Collection 5 [Myneni et al., 2002]) fill the observation vector
d in the assimilation experiments. They are also used as
comparison data in section 3. Observations are quality
screened and used only if their values are inside the valid
range, and if none of the following MOD15A2 quality flag
bits are set:

FparLai bit 2 (dead detectors)
FparLai bits 3 or 4 (clouds present or unclear)
FparLai bit 7 (failed retrieval)
FparExtra bit 0 or 1 (pixel not on land)
FparExtra bit 2 (snow or ice)
FparExtra bit 5 (internal cloud mask)
FparExtra bit 6 (cloud shadow detected)
[25] Observation uncertainty Vd for valid observations is

calculated by multiplying the minimum uncertainty with
the sum of the “severity factor” s which is then added to the

minimum uncertainty. Minimum uncertainty is defined as
0.05 (−) for FPAR and 1.0 (m2 m−2) for LAI.

s = 0
if FparLai bit 0 (back up algorithm) set: s = s + 1
if FparLai bit 5 (saturated retrieval) set: s = s + 2
if FparLai bit 6 (empirical method used) set: s = s + 4
if FparExtra bit 3 (aerosols present) set: s = s + 3
if FparExtra bit 4 (cirrus clouds detected) set: s = s + 8
2.3.3. Elevation Data
[26] The subgrid‐scale distribution of elevation classes is

derived from the gap‐filled CGIAR‐CSI SRTM global ele-
vation data set version 4 (A. Jarvis et al., Hole‐filled seam-
less SRTM data v4, http://srtm.csi.cgiar.org, 2008), extended
to the polar areas with GTOPO30 elevation data [U.S.
Geological Survey, 1996]. The nHGT elevation classes are
equally distributed over two standard deviations of the ele-
vation range in the assimilation area. Elevations below or
above the lowest or highest class are counted to the lowest
and highest class, respectively. The area fraction ah for each
elevation class is calculated by grid cell.
2.3.4. Plant Functional Type Data
[27] The subgrid‐scale distribution of 35 plant functional

type classes is derived from MOD12Q1 Collection 4 Land
Cover [Friedl et al., 2002], MOD44B Collection 3 Vegeta-
tion Continuous Fields [Hansen et al., 2003], AVHRR Tree
Cover Continuous Fields [Defries et al., 2000], MOD15A2
Collection 5 [Myneni et al., 2002], global crop data [Leff
et al., 2004], global temperature (Version 2.02) and precipi-
tation (Version 2.01) data [Wilmott and Matsuura, 2007],
following the method described by Lawrence and Chase
[2007] and Bonan et al. [2002]. The resulting PFT data set
contains the area fraction ap for each of the 35 PFTs by grid
cell. The PFT processing is described in Appendix A, and a
list of PFTs is given in Table 2. In this publication only the 15
natural PFTs are analyzed even though all 35 PFTs were
included in the data assimilation.

2.4. Experimental Setup

[28] The data assimilation experiments constrain a set of
model parameters. The parameters are then used in global
prediction experiments. Figure 1a displays the geographic
location of the 256 manually selected regions used for the
data assimilation experiments. In order to start where our
previous study has ended, the 4 region selection (red squares)
includes a temperate, mediterranean, boreal and tropical
ecosystem at four FLUXNET sites that are identical to the
ones used by Stöckli et al. [2008b]. Figure 1b then shows how
the 256 region selection finally becomes representative for
the full range of climatic conditions needed in a global pre-
diction. The technical details on both the data assimilation
and the prediction model are given in Appendix B.
2.4.1. Data Assimilation
[29] The four data assimilation experiments span 4, 16, 64

and 256 regions with 0.5° × 0.5° spatial coverage per region
(subsequently labeled as 4, 16, 64 and 256). Each region is
subdivided into 25 0.1° × 0.1° grid cells, where each grid cell
has a subgrid‐scale representation of 10 HGT classes and
35 PFT classes. 1000 ensemble members are integrated in
time. Prior model parameters and states are initialized and
perturbed as given in Table 1. The phenology model is inte-
grated for 30 years by cycling the 10 year observation period

Table 2. List of PFTs Including Their Abbreviationsa

PFT
Number PFT Name

PFT
Abbreviation

1 Bare soil, rock, ice, permanent snow bar all
2 Trees: temperate evergreen needleleaf enf tem
3 Trees: boreal evergreen needleleaf enf bor
4 Trees: boreal deciduous needleleaf dnf bor
5 Trees: tropical evergreen broadleaf ebf tro
6 Trees: temperate evergreen broadleaf ebf tem
7 Trees: tropical deciduous broadleaf dbf tro
8 Trees: temperate deciduous broadleaf dbf tem
9 Trees: boreal deciduous broadleaf dbf bor
10 Shrubs: evergreen broadleaf ebs all
11 Shrubs: temperate deciduous broadleaf dbs tem
12 Shrubs: boreal deciduous broadleaf dbs bor
13 Grass: Arctic c3 c3g arc
14 Grass: non‐Arctic c3 c3g nar
15 Grass: c4 c4g all

aOnly the PFTs of natural vegetation types are given.

STÖCKLI ET AL.: GLOBAL REANALYSIS OF PHENOLOGY G03020G03020

5 of 19



(2000–2009) three times. The 8 day MOD15A2 observations
are read at the center of their compositing period (days 4, 12,
etc.) since the exact compositing day is not given in the
MOD15A2 data set. In comparison to Stöckli et al. [2008b]

the EnKF analysis is carried out at the end of each year and
not after each observation period in order to avoid conver-
gence to local minima. This modification further results in a
less overconfined parameter ensemble and is based on the

Figure 1. (a) Geographic and (b) climatic distribution of the regions used for the data assimilation: experi-
ments with 4 regions (red large squares); 16 regions (red squares + blue triangles); 64 regions (red squares +
blue triangles + green diamonds); 256 regions (red squares + blue triangles + green diamonds + violet circles).
The colors of the climatic distribution (Figure 1b) qualitatively show the relative probability of occurrence for
the given climatic zone (bright yellow, low probability; dark red, high probability).

STÖCKLI ET AL.: GLOBAL REANALYSIS OF PHENOLOGY G03020G03020

6 of 19



assumption that a yearly constant set of model parameters
simulates the seasonal variation of vegetation states.
2.4.2. Global Prediction
[30] Global predictions are carried out on a 1° × 1° global grid

with the prior parameter set (subsequently labeled as “prior”)
and with the posterior parameter sets obtained by the above
described data assimilation experiments (subsequently labeled
as 4, 16, 64 and 256). The integrations employ 10 ensemble
members spanning the parameter uncertainty and they are
integrated forward in time during 1959–2009. 1959 is used as
spin‐up year. The prognostic states FPARandLAI are generally
within 1% of their spun‐up values after 3 months. A final
50 year long global “reanalysis” data set covers the period
1960–2009 and uses the 256 region parameter set.

3. Results

[31] The data assimilation framework is used to estimate a
new (posterior) set of global phenological parameters that
should yield a better prediction of phenological states. In this
section the prior and posterior parameter uncertainties are
firstly analyzed. Secondly, the effect of the posterior param-
eter set on the global, regional and local‐scale prediction of
phenological states is evaluated.

3.1. Global Parameter Estimation

[32] A total number of 510 empirical model parameters
were estimated (Tables 3–5). They can be separated into
6 climate control parameters, 6 structural parameters and
3 time averaging parameters that are estimated for each of
the 15 natural PFTs (the water PFT and the 19 crop PFT
parameters are excluded from the analysis).
3.1.1. Climate Control Parameters
[33] The climate control parameters given in Table 3 serve

as environmental triggers that primarily determine leaf onset
and senescence. The data assimilation is able to reduce the
posterior uncertainty to <30% of the prior uncertainty (the
latter is the square root of the initial parameter variances
found in Table 1) for 82% of the temperature, 76% of the
moisture and 72% of the light control parameters respec-
tively. Table 3 reveals negative values for the light control
parameter Lmin . This seems unphysical since the meteoro-
logical forcing Rg cannot become negative. The employed
phenology model is highly empirical without real physical
constraints. The negative Lmin values thus allow the evergreen
needleleaf species to keep needles and therefore maintain
LAI during winter when light can be absent especially in
boreal regions.

Table 3. Climate Control Parameters (Mean and Standard Deviation) by PFT Constrained by the Assimilation Using 256 Regionsa

PFT Tmin (K) Tmax (K) Wmin (mb) Wmax (mb) Lmin (W m−2) Lmax (W m−2)

bar all 270.6 ± 0.7 290.9 ± 0.8 12.5 ± 0.7 23.6 ± 0.4 102.7 ± 10.3 149.4 ± 6.5
enf tem 263.1 ± 0.5 276.4 ± 0.3 6.9 ± 0.3 47.9 ± 1.3 −68.3 ± 7.3 216.7 ± 2.5
enf bor 263.8 ± 0.6 290.0 ± 0.7 7.6 ± 0.4 21.4 ± 2.4 −82.8 ± 10.0 197.4 ± 4.4
dnf bor 262.2 ± 0.9 275.6 ± 0.7 18.8 ± 3.0 27.9 ± 3.8 103.9 ± 5.9 208.0 ± 2.7
ebf tro 271.3 ± 1.8 292.8 ± 0.3 21.9 ± 0.6 −1.4 ± 2.2 82.3 ± 9.4 168.9 ± 2.6
ebf tem 259.1 ± 1.0 285.9 ± 0.3 10.1 ± 0.4 20.9 ± 3.0 14.1 ± 10.7 35.0 ± 6.0
dbf tro 278.0 ± 0.4 299.1 ± 0.1 9.9 ± 0.2 43.9 ± 0.6 44.0 ± 13.8 81.4 ± 7.6
dbf tem 269.7 ± 0.3 291.5 ± 0.2 5.1 ± 0.2 25.4 ± 0.3 44.3 ± 3.9 203.0 ± 1.8
dbf bor 271.0 ± 0.6 279.8 ± 0.3 7.0 ± 1.0 46.9 ± 3.5 110.1 ± 3.7 223.4 ± 2.2
ebs all 265.5 ± 2.2 281.7 ± 0.8 3.4 ± 0.7 14.4 ± 0.4 −7.0 ± 7.1 242.4 ± 6.0
dbs tem 256.9 ± 0.6 298.0 ± 0.2 1.6 ± 0.4 44.5 ± 0.5 −4.7 ± 9.2 69.3 ± 3.8
dbs bor 273.5 ± 0.3 287.8 ± 0.5 17.5 ± 1.0 11.7 ± 2.9 60.8 ± 11.2 68.0 ± 8.1
c3g arc 267.8 ± 0.4 282.0 ± 0.4 2.3 ± 0.3 13.5 ± 0.5 19.9 ± 7.1 198.2 ± 3.2
c3g nar 267.1 ± 0.2 298.2 ± 0.5 1.5 ± 0.2 15.4 ± 0.1 −21.4 ± 6.6 63.0 ± 3.3
c4g all 268.6 ± 0.4 279.2 ± 0.3 4.1 ± 0.2 23.3 ± 0.2 −9.0 ± 5.1 217.7 ± 1.4

aPFT abbreviations are explained in Table 2.

Table 4. Structural Parameters (Mean and Standard Deviation) by PFT Constrained by the Assimilation Using 256 Regionsa

PFT FPARmin FPARmax gg (days
−1) gd (days

−1) LAIsat (m
2 m−2) FPARsat

b

bar all 0.11 ± 0.00 0.05 ± 0.00 0.19 ± 0.03 0.05 ± 0.01 9.70 ± 0.31 1.00 ± 0.01
enf tem 0.52 ± 0.01 0.98 ± 0.00 0.19 ± 0.02 0.19 ± 0.02 5.93 ± 0.25 0.98 ± 0.00
enf bor 0.52 ± 0.01 1.00 ± 0.01 0.34 ± 0.03 0.39 ± 0.04 6.23 ± 0.28 0.98 ± 0.00
dnf bor 0.33 ± 0.02 1.00 ± 0.00 0.49 ± 0.04 0.37 ± 0.04 6.69 ± 0.28 1.00 ± 0.00
ebf tro 0.16 ± 0.04 0.99 ± 0.00 0.57 ± 0.05 0.05 ± 0.01 7.07 ± 0.02 0.93 ± 0.01
ebf tem 0.01 ± 0.03 1.00 ± 0.01 0.45 ± 0.04 0.05 ± 0.00 6.91 ± 0.07 0.96 ± 0.00
dbf tro 0.27 ± 0.01 1.00 ± 0.01 0.37 ± 0.03 0.21 ± 0.02 6.85 ± 0.07 0.93 ± 0.00
dbf tem 0.29 ± 0.00 1.00 ± 0.01 0.57 ± 0.03 0.42 ± 0.02 6.01 ± 0.12 0.92 ± 0.00
dbf bor 0.23 ± 0.01 1.00 ± 0.01 0.60 ± 0.04 0.49 ± 0.04 6.85 ± 0.23 0.94 ± 0.01
ebs all 0.39 ± 0.01 0.85 ± 0.02 0.36 ± 0.04 0.31 ± 0.04 6.02 ± 0.31 0.97 ± 0.01
dbs tem −0.00 ± 0.01 0.77 ± 0.01 0.49 ± 0.04 0.43 ± 0.03 3.74 ± 0.10 0.84 ± 0.01
dbs bor 0.33 ± 0.01 0.84 ± 0.02 0.42 ± 0.03 0.47 ± 0.04 7.50 ± 0.31 0.99 ± 0.00
c3g arc 0.12 ± 0.00 0.63 ± 0.01 0.30 ± 0.03 0.15 ± 0.02 6.80 ± 0.27 0.99 ± 0.00
c3g nar 0.24 ± 0.00 0.94 ± 0.01 0.47 ± 0.02 0.37 ± 0.02 8.36 ± 0.10 1.00 ± 0.00
c4g all 0.19 ± 0.00 0.51 ± 0.00 0.55 ± 0.03 0.13 ± 0.01 7.87 ± 0.31 1.00 ± 0.00

aPFT abbreviations are explained in Table 2.
bUnits are dimensionless.
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3.1.2. Structural Parameters
[34] Structural parameters are given in Table 4. They

determine the upper and lower bounds of the leaf state. For
tropical evergreen broadleaf forests, the FPARmax (the upper
bound of FPAR) is better constrained than FPARmin since a
total absence of leaves can hardly ever be observed. The
lowest FPAR values can further be contaminated by clouds
and aerosols and get a larger observation error by the
employed observation quality screening method. The EnKF
then creates larger posterior parameter uncertainties when
few observations concur with larger observation errors. The
EnKF estimates each parameter independently from the
others. The bare soil FPARmax (0.05) for instance has a lower
posterior estimate than the FPARmin (0.11). The prediction of
bare soil FPAR will therefore have no seasonal cycle. The
predicted FPAR will remain at FPARmax. The posterior
uncertainty of FPARmax and LAIsat is well below 5% of the
prior parameter uncertainty for several boreal and temperate
PFTs such as temperate deciduous broadleaf forest, boreal
evergreen needleleaf forests or non‐Arctic grasslands. Leaf
growth rate gg values are higher than the leaf decay rate gd for
most PFTs. Leaf onset is a faster process than leaf senescence
for most natural species. Posterior uncertainties of both gg
and gd are between 10 and 20% of their initial uncertainty.
3.1.3. Time Averaging Parameters
[35] Time averaging parameters are given in Table 5. The

posterior uncertainties for the time averaging parameters is in
the range of 20–50% compared to the prior uncertainty. Jolly
et al. [2005] use 21 days for these parameters, which was our
initial (prior) value. For the temperate deciduous broadleaf
forest PFT the averaging times needed for temperature and
light decreases from 21 to 5.5 days and from 21 to 15.4 days
respectively while the time averaging needed for moisture
increases from 21 to 33.7 days.

3.2. Global Prediction

[36] A 50 year long FPAR and LAI reanalysis data set is
generated by running the prognostic phenology model with
the 256 region parameter set over the whole ERA Interim and
ERA 40 period (1960–2009). The prior and posterior global
FPAR and LAI prediction uncertainties and errors are ana-
lyzed in this section. The prediction uncertainty is caused by
the model’s parameter uncertainty. It can be calculated as the

ensemble variance of the predicted FPAR and LAI. The
prediction error on the other hand is defined as the mean
absolute deviation (MAD) between the ensemble mean of
predicted FPAR and LAI and the quality screened observa-
tions (2000–2009).
[37] Figure 2a summarizes the mean leaf state and its sea-

sonal variability for the 50 year long reanalysis data set. It
shows that highest annual mean LAI of above 5 m2 m−2 is
found in tropical climates and the largest seasonal LAI
amplitude (contour lines in Figure 2a) occurs in subtropical
and temperate climate zones. Figure 2b shows that northern
hemisphere temperate climate zones green up during April
andMaywhile northern hemisphere boreal andArctic climate
zones green up during May and June.
[38] Figure 3 visualizes that the highest prediction errors

with the prior parameter set occur in subtropical, Mediterra-
nean and temperate areas. The prior mean absolute deviation
(MAD) of predicted versus observed LAI is in the order of
3.0 m2 m−2 for these regions. The MAD of LAI decreases
to below 1.5 m2 m−2 in the 4 region experiment. The largest
improvements between the 4 and the 256 region experiments
are confined to crop‐intensive areas such as India, central
USA and Europe, but also semiarid areas such as the Sahel
in Africa and central Australia.
[39] Figure 4 displays the evolution of the global mean

prediction error and prediction uncertainty with the increas-
ing number of assimilated observations. The global LAI and
FPAR prediction error (solid lines) successively decreases
with the increasing number of assimilated observations.
More than 50% of the prior prediction error is removed by the
4 region experiment, while the 256 region experiment further
reduces the global FPAR and LAI prediction error to 20.6%
and 14.8% of the prior prediction error, respectively. The
prediction uncertainties (dashed lines in Figure 4 and Table 6)
decrease to 3.4% and 3.9% of their prior values (0.326 and
2.79 m2 m−2) for FPAR and LAI. Already the 4 region
experiment covering only 0.007% of the global land area
reduces FPAR and LAI uncertainty to 17.8% and 16.1% of
their prior uncertainty.
[40] Figure 4 also reveals that the prediction error decreases

less rapidly than the prediction uncertainty (solid versus dashed
lines). The model ensemble members converge slightly faster
than expected from the remaining model‐observation dif-
ferences. Parameter and state covariance underestimation is
a common feature in ensemble data assimilation [Li et al.,
2009]. In our experiments it happens despite the employed
ensemble inflation (equation (36)) and despite the large
number of chosen ensemble members.

3.3. Regional Prediction

[41] The global land area is screened by PFT class, where
only grid points with at least 25% coverage for a given PFT
are included in each respective area. In Figure 5, Taylor
diagrams [Taylor, 2001] document the statistical perfor-
mance of FPAR and LAI predictions by simultaneously
drawing the correlation coefficient R between the model and
the observations and the normalized standard deviation (the
standard deviation of the model divided by the standard
deviation of the observation). Table 7 provides the mean bias
(bias) and root mean square error (rmse) values for each PFT.
[42] The temperate deciduous broadleaf forest (PFT

class 8) FPAR and LAI predictions in the 256 region exper-

Table 5. Time Averaging Parameters (Mean and Standard Devia-
tion) by PFT Constrained by the Assimilation Using 256 Regionsa

PFT tT (days) tW (days) tL (days)

bar all 34.1 ± 1.3 43.0 ± 1.1 21.4 ± 1.5
enf tem 25.9 ± 1.1 30.5 ± 1.4 12.2 ± 1.0
enf bor 5.3 ± 0.8 19.1 ± 1.6 5.4 ± 1.1
dnf bor 17.0 ± 1.3 9.6 ± 1.7 10.7 ± 1.1
ebf tro 22.9 ± 1.7 36.1 ± 1.6 5.0 ± 1.2
ebf tem 12.4 ± 1.2 13.0 ± 1.6 23.4 ± 1.6
dbf tro 21.4 ± 1.0 11.3 ± 0.7 24.1 ± 1.6
dbf tem 5.5 ± 0.5 33.7 ± 1.0 15.4 ± 0.8
dbf bor 12.9 ± 0.9 17.6 ± 1.6 16.5 ± 1.1
ebs all 19.1 ± 1.7 29.1 ± 1.4 13.5 ± 1.2
dbs tem 16.4 ± 0.9 10.7 ± 0.6 19.9 ± 1.4
dbs bor 5.4 ± 0.6 18.7 ± 1.6 30.9 ± 1.5
c3g arc 5.2 ± 0.8 23.8 ± 1.3 25.4 ± 1.2
c3g nar 5.0 ± 0.5 18.3 ± 0.6 20.3 ± 1.2
c4g all 17.8 ± 1.0 7.2 ± 0.3 27.3 ± 0.9

aPFT abbreviations are explained in Table 2.
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iment have a high R > 0.98 but slightly underestimate
phenological variability when compared to observations
(normalized standard deviation <1). Bias and rmse for both
FPAR and LAI substantially decrease (rmse to around 30%
of its prior value and the bias in LAI from >1 m2 m−2 to
−0.09 m2 m−2, Table 7). For this PFT it would be interesting
to evaluate the interannual variability of the spring leaf‐out
date. However, while the modeled FPAR and LAI output is
daily, the spring date cannot be accurately diagnosed from the
MODIS observations since they have a 8 day compositing
period (and the actual compositing day is not given in the
data). The boreal evergreen needleleaf forest (PFT class 3)
LAI in the 256 region experiment reaches a very high pre-
diction accuracy with R = 0.97, a bias of 0.03 m2 m−2 and
a rmse value which is <15% of its prior value. A similar gain
in accuracy is achieved for the boreal deciduous needleleaf
forest (PFT class 4) and for the Arctic c3 grass (PFT class 13).

[43] Figure 5 demonstrates that the prediction using the
prior parameters generally overestimates phenological vari-
ability for most PFTs (normalized standard deviation > 1) and
the highest R values are at 0.9. In the 256 region experiment
most PFTs cluster in the same “high prediction accuracy” area
and the highest R values reach 0.99. The 256 region experi-
ment slightly underestimates phenological variability for
most PFTs, which might be a result of residual observation
noise (and thus exaggerated observation variability) despite
of the employed restrictive quality screening. The correlation
coefficient R of evergreen species such as the tropical and
temperate evergreen broadleaf forest (PFT classes 5 and 6) or
the evergreen broadleaf shrub (PFT class 10) remains low for
both FPAR and LAI in the 256 region experiment. However,
their bias and rmse values substantially improve. Correlation
is not a suitable statistical means in the case of time series with
almost constant (evergreen) values. The bias and rmse values

Figure 2. The 50 year long (1960–2009) global reanalysis data set of vegetation phenology. (a) Annual
mean LAI and seasonal amplitude (contours with 1 and 2 m2 m−2). (b) Mean spring date for grid points that
have a seasonal amplitude above 1 m2 m−2.

STÖCKLI ET AL.: GLOBAL REANALYSIS OF PHENOLOGY G03020G03020

9 of 19



Figure 4. Relationship between the global FPAR and LAI prediction error (blue and red solid lines) and
prediction uncertainty (blue and red dashed lines), respectively, and the number of observations in the
assimilation experiments using 4, 16, 64 and 256 regions.

Figure 3. Global maps with the Mean Absolute Deviation (MAD) of the predicted FPAR and LAI versus
MODIS FPAR and LAI using the prior parameter set and the parameters constrained by 4 and 256 regions
during 2000–2009.
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Figure 5. Performance of regional FPAR and LAI predictions by PFT with the prior parameter set and the
parameters constrained by the 256 region experiment. Modeled FPAR and LAI have triangle symbols when
they match observations accurately (both bias and rmse <5% of FPAR and LAI range according to Table 7).

Table 6. Number and Percentage of Assimilated Observations (Relative to Available Non‐QA Screened Observations and Relative to
Total Global Land Area) as Well as Resulting FPAR and LAI Posterior Uncertainties and Prediction Errors

Experiment

Observations FPARa LAI (m2m−2)

Number Percent QA Passed Percent Global Land Uncertainty Error Uncertainty Error

Prior 0 0 0 0.326 0.310 2.79 2.29
4 13′943′482 44.8 0.007 0.058 0.143 0.45 0.92
16 50′768′668 42.8 0.025 0.026 0.074 0.17 0.46
64 213′642′410 45.4 0.098 0.015 0.070 0.14 0.41
256 869′605′738 44.7 0.405 0.011 0.065 0.11 0.34

aUnits are dimensionless.
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given in Table 7 clearly demonstrate that both magnitude
(bias) and phase (rmse) significantly gain in realism. Bold
values document that for all PFTs the FPAR and LAI biases
fall below 5% of the FPAR and LAI range, while most rmse
values reach this threshold in the 256 region experiment.

3.4. Local Prediction

[44] Any scientific application that is applied to global
scales should be reevaluated at the local scale if possible in
order to gain a better process‐based understanding and reveal
missing model components [see, e.g., Stöckli et al., 2008a;
Oleson et al., 2008]. The phenology model using the global
parameter set has therefore been tested at the same four
FLUXNET tower sites as in our local‐scale data assimilation
study [Stöckli et al., 2008b]. The aim of this section is to
evaluate to what degree the model using the above estimated
global parameter set is still able to represent local‐scale
phenology at specific sites.
3.4.1. Morgan Monroe State Forest
[45] The Morgan Monroe State Forest site (USA) is a

temperate deciduous forest interleaved by grassland and
crops. The site‐level simulation and the 4 region experiment
simulate a realistic seasonal cycle (Figure 6a). The 4 region
experiment should always be closer to the site‐level experi-
ment than for instance the 256 region experiment since the
former uses parameters that are constrained over exactly the
four regions covering the four sites, where the latter uses
parameters that minimize the prediction error for a global
area. A two‐stage green‐up successively appears in the 16,
64 and 256 region experiments. This two‐stage green‐up is
likely due to a unrealistic green‐up timing of nonnatural PFTs
present in this grid cell. The PFT parameters for maize (14%
of the area) and soy (12% of the area) are constrained with
information from globally distributed croplands by the 16, 64
and 256 region experiments, but their values do not seem to
be valid at this particular site or for this particular year. The
employed static PFT map would firstly not be suitable in
areas where crop rotation is practiced, and secondly a crop

phenology model might be required to realistically simulate
the phenological stages of different crops in a global pre-
diction. Senescence is realistic in the 4, 16, 64 and 256 region
experiments but is delayed in the site‐level experiment. The
64 and 256 region experiments further reveal a underesti-
mation of summer LAI magnitude. It might be related to the
negative bias of the temperate deciduous broadleaf forest LAI
prediction found in the regional analysis above (Table 7).
3.4.2. BOREAS Old Black Spruce
[46] The high prediction skill at the boreal forest site

BOREAS Old Black Spruce (Canada) appears to be inde-
pendent of whether a site‐level or global parameter set is used
(Figure 6b). This result firstly demonstrates that the regions
where boreal evergreen needleleaf forest occur are spatially
more homogeneous than for instance the patchy landscapes
encountered in temperate climate zones. The PFT distribution
at BOREAS for instance consists of around 50% evergreen
needleleaf trees, 20% deciduous shrubs and 20% Arctic
grasslands. Secondly, phenological timing for this PFT is
controlled by a well defined set of environmental triggers
(defined by the climate control parameters in Table 3) that
are valid from local to global scales. This result is underlined
by the high prediction performance of the boreal evergreen
needleleaf forest PFT found in the regional analysis above.
3.4.3. Santarem KM83
[47] The prior parameter set at the tropical evergreen

broadleaf site Santarem KM83 (Brazil) creates a unrealistic
light‐limited leaf loss of around 2 m2 m−2 at the end of the
wet season (April–June) while both quality screened obser-
vations and all posterior parameter sets show a constant
LAI throughout the year. Figure 6c demonstrates that the
employed observation quality control is working well and
that cloud affected (wet season) and aerosol contaminated
(dry season) observations at the site are properly screened and
do not affect the data assimilation process.
3.4.4. Tonzi Ranch
[48] Although the Tonzi site (USA) has the same mean

monthly precipitation and mean temperature as Morgan
Monroe State Forest (the two red boxes that coincide in the
center of Figure 1b), it is a mediterranean savanna‐type
ecosystem with a rather dry late summer and a wet winter
season. Figure 6d shows that the magnitude but also the
timing of the drought response between May and September
(see also Figures 3 and 4 in the work of Stöckli et al. [2008b])
are simulated very realistically by the site‐level and the
4 region experiments compared to the prior experiment. The
timing is still accurate in the 16, 64 and 256 region experi-
ments, but the peak LAI during April and May is severely
underestimated in the 16, 64 and 256 region experiments. The
result demonstrates that global parameter sets can become
inaccurate at the local scale for ecosystems with a complex
canopy. The site‐level experiment yields July/August LAI
values that are comparable to ground measurements [Ryu
et al., 2010b]. However, our simplified canopy radiative
transfer neglects the contribution of vegetation structural
aspects like leaf clumping while ground measurements
often neglect the contribution of the understory LAI that is
also measured by the satellite. Currently the comparison of
satellite‐ and ground‐observed phenology is best achieved
through the analysis of phenological timing [Studer et al.,
2007; Stöckli et al., 2008b; Liang et al., 2011]. Newly
developed near‐surface remote sensing methods are promis-

Table 7. Bias and RSME (in Parentheses) of Regional FPAR
and LAI Predictions by PFT With the Prior Parameter Set and
the Parameters Constrained by the 256 Region Experimenta

PFT

FPAR LAI

Prior 256 Prior 256

bar all 0.30 (0.31) −0.01 (0.02) 1.62 (1.63) 0.02 (0.04)
enf tem 0.02 (0.10) −0.02 (0.03) 0.93 (1.11) −0.17 (0.33)
enf bor −0.12 (0.22) 0.00 (0.05) 0.32 (1.14) 0.03 (0.16)
dnf bor −0.06 (0.21) 0.00 (0.08) 0.56 (1.32) 0.03 (0.23)
ebf tro 0.06 (0.06) 0.01 (0.02) 0.01 (0.23) 0.19 (0.27)
ebf tem 0.04 (0.12) 0.00 (0.02) 0.62 (0.93) 0.25 (0.41)
dbf tro 0.16 (0.17) 0.00 (0.01) 1.36 (1.39) 0.08 (0.15)
dbf tem 0.07 (0.12) −0.03 (0.04) 1.07 (1.26) −0.09 (0.38)
dbf bor −0.00 (0.21) −0.00 (0.07) 0.68 (1.39) 0.19 (0.42)
ebs all 0.01 (0.16) −0.04 (0.07) 0.79 (1.07) −0.10 (0.27)
dbs tem 0.33 (0.33) 0.04 (0.04) 2.14 (2.17) 0.25 (0.26)
dbs bor −0.04 (0.18) 0.01 (0.07) 0.61 (1.18) 0.04 (0.15)
c3g arc 0.02 (0.13) −0.00 (0.03) 0.76 (1.16) 0.03 (0.09)
c3g nar 0.27 (0.28) 0.02 (0.03) 1.95 (1.99) 0.11 (0.13)
c4g all 0.26 (0.27) 0.01 (0.02) 2.09 (2.10) 0.10 (0.12)

aThe accuracy of bold values is better than 5% of the full FPAR or LAI
range (1.0 and 8.0, respectively).
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ing to also compare phenological magnitude [Ahrends et al.,
2008; Richardson et al., 2009; Ryu et al., 2010a].

4. Discussion

4.1. Data Assimilation

[49] By running the data assimilation over less than 1% of
the global land surface the global FPAR and LAI prediction
error could be reduced to below 20% of its initial value. The

key for this success is most likely the wide climatic and
biogeographic range spanned by the chosen subset of
assimilation regions (Figure 1). The 4 region experiment
already includes a tropical, a temperate, a boreal and a medi-
terranean climatic environment to constrain a set of param-
eters that then show substantial skill in a global prediction
(Figure 3). Figure 4 suggests that little improvement can be
expected when extending the assimilation area beyond the
0.4% of global land area covered by the 256 region experi-

Figure 6. Predicted versus observed site‐level (0.5° × 0.5°) LAI using the site‐level, the prior parameter
set and the parameter sets constrained by 4, 16, 64 and 256 regions during 2003.
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ment. Research on the optimal location of assimila-
tion regions might further reduce the computational resources
needed for a global data assimilation of vegetation phenol-
ogy.
[50] The parameter uncertainties seem to converge much

faster than the prediction errors. While the EnKF allows in
theory a perfect estimation of the combined posterior model
and parameter error by analysis of both the prior model
uncertainty and the observation uncertainty, there are many
assumptions to be made for the practical implementation of
the EnKF in a prediction system. Each of the following
assumptions could be the cause for the observed parameter
overconfidence:
[51] 1. The ensemble size N for the EnKF should be as

large as possible since the sampling error decreases by 1/
ffiffiffiffi
N

p
.

1000 ensemble members are likely too low since around
10000 states and 510 parameters are estimated for each
region. With the available computational resources for this
project there is little that can be done regarding ensemble size.
[52] 2. If the measurement size exceeds the ensemble size,

rank problems can occur because the measurement error
covariance needs to be compressed into the ensemble space.
We however make use of the inversion presented by Evensen
[2004] that uses a measurement operator covering the full
rank of measurements to avoid the problem of rank loss
reported in the literature [Kepert, 2004].
[53] 3. If the measurement uncertainty is poorly chosen

in a bayesian method, the posterior model uncertainty will
likely be wrong. The measurement uncertainty is derived
from MODIS quality flags that are themselves based on
semiempirical detection algorithms for clouds, shadows,
aerosols and reflect an incomplete set of retrieval errors
[Justice et al., 2002]. Further, arbitrary scaling factors are
used to transfer the quality flags into a quantitative set of
observation uncertainties. The superobservations derived in
equation (29) neglect any spatially correlated measurement
errors that are likely to happen with cloud contamination or
snow cover.
[54] 4. The EnKF solver is chosen to avoid local minima

since the full nonlinear prediction model is integrated without
the need to create first order derivatives as needed for instance
in the Extended Kalman Filter or in variational data assimi-
lation techniques like 3D or 4D VAR. A yearly analysis
guarantees that parameters do not satisfy individual obser-
vations but are consistent with the entire seasonal cycle of
the leaf state.
[55] 5. By estimating a set of 15 parameters for a total of

34 PFTs several solutions in the parameter space might pro-
duce a similar prediction. However, even though equifinality
might generate wrong parameters it should to the best of our
knowledge not lead to parameter overconfidence.

4.2. Phenology Model

[56] We chose a rather empirical phenology model with a
large set of climate control parameters, structural vegetation
parameters and time averaging parameters.
[57] It was demonstrated how both climate control and

structural vegetation parameters can be thoroughly constrained
by the 10 years of MODIS data while time averaging
parameters are left with a substantial posterior uncertainty.
There is nevertheless evidence that the time averaging needed

for temperature and light are likely shorter than 21 days and
the averaging time for moisture is higher than 21 days. This
result contrasts most temperature‐based phenology models
that work with growing degree days since they often integrate
temperature history over several months [Chuine, 2000]. The
long averaging time for moisture further demonstrate that tall
trees in temperate climate zones can sustain greenness for
prolonged periods of droughts. For short natural vegetation
like grasslands and deciduous shrubs the moisture averaging
times result well below 21 days, most likely related to their
short rooting depths and higher susceptibility to drought.
[58] The tropical evergreen broadleaf forest PFT requires

the longest moisture averaging times. Our model yields a
seasonally largely constant FPAR and LAI for this PFT.
Tropical trees are known to be resistant to the yearly recurring
dry periods [Lee et al., 2005]. Recent studies however dem-
onstrate that tropical plant physiology and phenology is very
complex and both can sensitive to extreme drought periods
[Saleska et al., 2007; Myneni et al., 2007; Phillips et al.,
2009; Zhao and Running, 2010]. These studies are based
on satellite‐based EVI, modeled GPP or on field mea-
surements of biochemical fluxes and carbon stocks and not
on satellite‐based FPAR or LAI. Further, drought‐induced
changes in tropical phenology may not be detectable with
spectroradiometers like MODIS but only with hyperspectral
radiometers like Hyperion [Asner et al., 2004]. These open
questions should motivate follow‐up research in both mod-
eling and observation of tropical phenology.
[59] Our model entirely depends on a multiplicative set of

linearized and time integrated temperature, light and moisture
controls. The model therefore excludes several known bio-
physical and abiotic controls such as chilling requirements,
insect pests, harvest, irrigation, nutrient limitations, tree
aging, biodiversity effects or frost events. The high prediction
skill on the seasonal and interannual timescale spanning local
to global spatial scales demonstrates that the main drivers
of phenological variability have been included in the model.
However, the short observation period of 10 years by defi-
nition excludes most climatological extreme events required
to exploit the full range seasonal to decadal phenological
variability. Especially the climate control parameters of sub-
tropical and tropical drought‐deciduous PFTs might benefit
from a longer observation period.
[60] Plant physiological research suggests that bud burst

of temperate deciduous species is driven by photoperiod (but
not necessarily the light intensity Rg as used in this study).
Photoperiod can serve as trigger for temperature sensitivity
[Körner, 2006]. Our results demonstrate that the best
empirical prediction of temperate deciduous broadleaf forest
phenology is simulated by a combined temperature‐light
forcing. Figure 4a of Stöckli et al. [2008b] visualizes that a
light trigger (green curve, crosses) precedes the temperature
trigger (red curve, stars). However, it is currently debated
whether light, temperature or both control bud burst. These
relationships also vary by species [Körner and Basler, 2010]
and cannot be generalized [Cleland et al., 2007].

4.3. Plant Functional Type Data

[61] Plant functional types [Bonan et al., 2002] are chosen
instead of the often used biomes or land cover classes
[Hansen et al., 2000] because they are better in line with the
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separation needed for phenological predictions. The single
savanna biome at for instance the Tonzi Ranch is composed
of a evergreen broadleaf tree PFT (with maximum LAI in late
summer) and of a drought‐deciduous c3 grass PFT (with
maximum LAI in early spring). Both PFTs display a very
different phenological cycle and there is no single parameter
set that would enable a realistic simulation of the single
savanna biome. The regional analysis however suggests that
several PFT classes like the temperate deciduous broadleaf
forest PFT, the evergreen broadleaf shrub PFT or the tem-
perate deciduous broadleaf shrub PFT might still be too
heterogeneous in terms of phenological behavior and could
be separated into sub‐PFT classes. Phenological predictions
would surely benefit from consistent global PFT maps based
on new remote sensing technologies as for instance presented
by Ustin and Gamon [2010].
[62] The focus of this study is the estimation of phenology

parameters for natural vegetation. However, crop PFTs were
also included in the data assimilation. Satellite pixels contain
a mixed signal from both natural andmanaged vegetation that
needs to be decomposed in order to estimate parameters for
the natural vegetation PFTs. Figure 3 demonstrates that the
FPAR and LAI of regions with heavy crop cover are well
predicted without the explicit use of a crop phenology model.
This shows that even managed vegetation phenology is
dominantly weather and climate driven. However, for climate
model applications a dedicated crop phenology model should
be used since especially the carbon uptake of crops differs
from natural vegetation [Gervois et al., 2004; Lokupitiya
et al., 2009].

4.4. Satellite Data

[63] The MODIS FPAR and LAI data are derived from
MODIS surface reflectances by inversion of a canopy radi-
ative transfer model [Myneni et al., 1999, 2002]. They are
more accurate in low biomass areas and generally exaggerate
LAI for broadleaf and needleleaf forests [Wang et al., 2004;
Cohen et al., 2006]. The LAI retrieval from visible and near‐
infrared surface reflectances is underdetermined for inter-
mediate and high LAI values which can yield errors in the
order of 50% [Garrigues et al., 2008]. The FPAR and LAI
data set presented in this study will inherit such errors. We
further use a very simplified representation of the canopy
light interception that only fits 4 canopy structural parameters
per PFT (FPARmin , FPARmax, FPARsat and LAImax). Com-
pared to theMODIS retrieval algorithm it does not include the
effects of foliage and canopy clumping, nongreen canopy
elements, soil background reflectance, shading or vertical
canopy structure [Myneni et al., 1999; Shabanov et al., 2003].
These differences can introduce inconsistencies between the
assimilated and predicted FPAR and LAI values. They might
be responsible for some of the scaling issues found at Morgan
Monroe and Tonzi Ranch.
[64] The restrictive quality screening of MODIS observa-

tions employed in this study eliminates the majority of cloud,
aerosol, snow and cloud shadow contamination that usually
complicates the generation of climate quality biophysical
satellite parameters in tropical or high latitude [Los et al.,
2000; Poulter and Cramer, 2009]. On the global average
40–50% of all valid observations pass quality screening
(Table 6). In tropical areas only 5–10% (not shown) pass

the quality screening. Neglecting quality screening can for
instance lead to misleading conclusions on the drought
response of tropical trees [Saleska et al., 2007] as shown by
Samanta et al. [2010].
[65] Remote sensing data assimilation in combination with

a predictive model has the capability to complement the
classical data‐only gap filling procedures such as maximum
value compositing or fourier time series fitting employed in
most current satellite‐based land surface data sets [Los et al.,
2000; Jonsson and Eklundh, 2002; Stöckli and Vidale, 2004;
Tucker et al., 2005; Fang et al., 2008].

4.5. Weather Forcing Data

[66] The model parameter set and therefore the phenolog-
ical prediction will be sensitive to the choice of weather
forcing data since predicted states are empirically and not
mechanistically linked to the meteorological predictors.
Potential biases in the ECMWF ERA Interim data might
therefore have created unrealistic posterior parameter sets
during the data assimilation. We have perturbed the weather
forcing data with uncertainties as given in section 2, but the
perturbation does not correct for biases in the weather forcing
data. Also, a new estimation of model parameters might
be required if a new weather forcing data with a different
spatial scale or with a different climatology is used or if the
phenology model is applied in coupled mode as part of a
climate model.

5. Conclusions and Outlook

[67] Our study demonstrates how remote sensing data
assimilation can be used to reduce uncertainties in a global
phenology model. The assimilation of MODIS data covering
less than 1% of the global land surface successfully reduced
the global FPAR and LAI prediction errors to 20.6% and
14.8% of their respective prior errors. A too high variance
reduction in the posterior parameter set could be mitigated
by use of a more quantitative observation uncertainty estima-
tion. Novel data assimilation methods such as the Maximum
Likelihood Ensemble Filter MLEF [Zupanski, 2005] employ-
ing Hessian preconditioning and a gradient search method
might yield more realistic globally applicable parameter sets.
[68] Our study suggests that PFTs are a suitable means to

disaggregate mixed satellite pixels on global scale and they
allow to create a PFT‐specific parameterization of a globally
applicable phenologymodel. The boreal evergreen needleleaf
forest PFT and the tropical evergreen broadleaf forest PFT
perform realistically over a large range of spatial scales.
However, local‐scale predictions using a global parameter
set can become unreliable in both magnitude and timing as
for instance demonstrated for the mixed natural‐agricultural
temperate landscape (Morgan Monroe) and the savanna
landscape (Tonzi Ranch). The phenological data assimilation
experiment could now be repeated with a variety of globally
applicable phenology models and PFT data sets. In order to
increase the compatibility between assimilated and predicted
vegetation states the MODIS canopy radiative transfer model
could be employed in the prediction of FPAR and LAI. A
more complex treatment of leaf and canopy clumping, leaf
orientation, shadowing or nongreen canopy elements would
further broaden the applicability of our methods and data sets.
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As a first step global maps of foliage clumping [Chen et al.,
2005; Pisek et al., 2010] could enhance our simplified LAI
calculation with geometric information on canopy structure.
[69] Our study is a first step tomitigate some deficiencies of

current phenological models. As already shown by Stöckli
et al. [2008b] the parameterized phenology model can be
useful to disentangle the influence of meteorological drivers
on the observed phenological variability. It could be a con-
tribution to the currently ongoing discussion on how tem-
perature and light (or photoperiod) govern the timing of
phenological spring events [Körner and Basler, 2010]. The
50 year long global phenological reanalysis data set (1960–
2009) should be suitable for climate analysis studies. It might
for instance contain evidence on whether the light trigger is
the hard limit for the currently observed (temperature‐related)
negative trends for phenological spring events [Cleland et al.,
2007; Rutishauser et al., 2007].
[70] Future research should combine process‐based

knowledge from hydrology, plant physiology and canopy
radiative transfer modeling with the highly empirical world of
plant phenology. This is needed to better understand and
simulate the response of the terrestrial water and carbon cycle
to climate variability and change and to quantify the resulting
impacts on the other earth system components [Penuelas
et al., 2009]. We would therefore like to motivate earth
system modelers to experiment with data assimilation and
to bring forward a new generation of phenology and land
surface models. In order to facilitate this, the presented data
set, all program codes, parameters, documentation and sim-
ple hands‐on experiments are publicly available at http://
phenoanalysis.sourceforge.net.

Appendix A: Plant Functional Type Data
Generation

[71] The following modifications are made to the PFT
processing by Lawrence and Chase [2007] and Bonan et al.
[2002]:
[72] 1. The single crop class is decomposed into 19 indi-

vidual crop classes according to Leff et al. [2004].
[73] 2. This yields 35 PFT classes in total: 15 natural types,

19 crop classes and water.
[74] 3. The processing is performed at 30″ spatial resolution

instead of 0.05°.
[75] 4. The monthly temperature climatology [Wilmott and

Matsuura, 2007] is downscaled to 30″ by use of a lapse rate
of 0.5 K 100 m−1 applied to the above described topography
data set.
[76] 5. MOD15A2 LAI is quality screened as described

above in order to evaluate the c4 grass fraction. Following
Still et al. [2003] the c4 grass fraction is the sum of LAI for
those months that satisfy the c4 growth criteria (temperature
>22°C and precipitation >25 mm) over the sum of LAI for all
months. Since they have used NDVI instead of LAI, we apply
the square‐root to the LAI‐derived c4 grass fraction in order
to account for the almost exponential relationship between
NDVI and LAI.
[77] 6. The processing merges 7 sometimes inconsistent

data sets into a single continuous plant functional type cover
data set. The inconsistencies (e.g. MOD44B indicates 25%
tree cover but the AVHRR VCF shows 0% tree cover) are

overcome by inverse distance filling where the MODIS data
set served as the reference data set.

Appendix B: Technical Set Up

[78] The data assimilation framework is parallelized by
using Version 1.2 of the MPI standard [Message P Forum,
1994] with a one‐ or two‐dimensional process topology
(multiple regions and one region per process, or single region
distributed along longitude and latitude range). Model state
prediction, I/O, observation QA screening, gridding of
superobservations, HA and D matrices are calculated on
separate processes by assigning one region per process and
one process by logical CPU unit. The prior parameters are
perturbed once and distributed to all processes in order to end
up with a global analysis parameter set. Model states and
weather forcing are perturbed by process. One process is
reserved for the global analysis, where all regionalHA andD
are collected at the end of each simulation year and the global
analysis is performed. The global analysis matrix (X5 of
Evensen [2003]) is finally redistributed to all processes,
where the computationally intensive final ensemble update of
states and parameters is performed.
[79] The bottlenecks for this framework are its heavy

memory usage, the size of the observational data and the
global EnKF analysis. The parallelization of the EnKF solver
would be an important next step in order to increase data
assimilation performance. The state matrix has 7 dimensions
(ens × lon × lat × PFT × HGT × state × days), the parameter
matrix has 3 dimensions (ens × PFT × parameter), the forcing
data has 5 dimensions (ens × lon × lat × HGT × forcing),
which exceeds per‐process memory availability on today’s
supercomputers. In order to increase memory efficiency, a
subset of HGT and PFT classes for states is integrated in each
region, where only HGT and PFT classes are selected that
cover more than 2.5% of the area in each region. Water areas
(PFT number 35) are screened and not used during the
analysis. Furthermore the upper bound of superobservations
to be used in the global analysis was set to 50000. The
analysis then is within around 1 GB per process (with a
maximum of 4–8 GB per node on, e.g., NCCS Discover with
8 CPUs per node and 16–32 GB per node on, e.g., NCAR
Bluefire with 32 CPUs per node).
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