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[1] Predicting the global carbon and water cycle requires a realistic representation of
vegetation phenology in climate models. However most prognostic phenology models are
not yet suited for global applications, and diagnostic satellite data can be uncertain and
lack predictive power. We present a framework for data assimilation of Fraction of
Photosynthetically Active Radiation absorbed by vegetation (FPAR) and Leaf Area Index
(LAI) from the MODerate Resolution Imaging Spectroradiometer (MODIS) to constrain
empirical temperature, light, moisture and structural vegetation parameters of a
prognostic phenology model. We find that data assimilation better constrains structural
vegetation parameters than climate control parameters. Improvements are largest for
drought-deciduous ecosystems where correlation of predicted versus satellite-observed
FPAR and LAI increases from negative to 0.7–0.8. Data assimilation effectively
overcomes the cloud- and aerosol-related deficiencies of satellite data sets in
tropical areas. Validation with a 49-year-long phenology data set reveals that the
temperature-driven start of season (SOS) is light limited in warm years. The model has
substantial skill (R = 0.73) to reproduce SOS inter-annual and decadal variability. Predicted
SOS shows a higher inter-annual variability with a negative bias of 5–20 days compared to
species-level SOS. It is however accurate to within 1–2 days compared to SOS derived
from net ecosystem exchange (NEE) measurements at a FLUXNET tower. The model only
has weak skill to predict end of season (EOS). Use of remote sensing data assimilation for
phenology model development is encouraged but validation should be extended with
phenology data sets covering mediterranean, tropical and arctic ecosystems.
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1. Introduction

1.1. Phenology and Climate

[2] Timing and magnitude of cyclic events in the terres-
trial biosphere are strongly related to climate variability
[Scheifinger et al., 2002] because plant physiological pro-
cesses are controlled by surface climatic states like mois-
ture, temperature and light [Jarvis, 1976; Larcher, 2003].

Seasonal and inter-annual climatic variations influence the
timing of plant development called vegetation phenology.
[3] Phenological networks provide one of the longest

sources of direct evidence of climate variability and change
[van Vliet et al., 2003; Betancourt et al., 2005; Menzel et
al., 2006]. Concurrent with recent warming trends bud burst
or flowering have advanced by around 1–2 days per decade
in temperate deciduous ecosystems [Menzel and Fabian,
1999; Menzel, 2000]. Historical records and phenological
reconstructions also reveal substantial inter-annual to cen-
tennial variability of start of season (SOS) [Menzel et al.,
2005; Aono and Kazui, 2008; Rutishauser et al., 2007]. End
of season (EOS) events like leaf coloring, and hence their
variability, are harder to detect and document but neverthe-
less they are strongly coupled to climate [Sparks and
Menzel, 2002; Taylor et al., 2008]. In general the growing
season has lengthened during the last decades of the 20th
century [Intergovernmental Panel on Climate Change,
2007b].
[4] Modeling studies demonstrate the influence of vege-

tation phenology on the climate system. Regional and
global temperature and precipitation patterns are both sen-
sitive to and affect not only temporal but also spatial
phenological variability [Tsvetsinskaya et al., 2001; Lu
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and Shuttleworth, 2002; Kim and Wang, 2005]. Piao et al.
[2007] show that modeled growing season length correlates
with terrestrial CO2 uptake. White and Nemani [2003]
however find that the yearly net CO2 balance is only
moderately affected by growing season length. This can
be explained by both enhanced spring CO2 uptake and
higher autumnal CO2 respiration rates [Schaefer et al.,
2005] and leads to larger seasonal CO2 amplitudes as
documented by Keeling et al. [1996]. On longer time scales
phenology can affect tree competition and vegetation
dynamics in response to climate variability and change
[Kramer et al., 2000]. Generally, either diagnostic or
prognostic parameterizations of vegetation phenology are
employed in these studies.

1.2. Diagnostic Phenology

[5] Satellite remote sensing vegetation indices exploiting
the seasonal changes in the spectral signature of vegetation
photosynthetic activity have been developed during the last
two decades [Tucker et al., 1985; Reed et al., 1994]. They
can be used to derive global maps of biophysical and
phenological parameters like FPAR or LAI. These maps
then prescribe phenological variability in climate models
[Sellers et al., 1996; Buermann et al., 2001; Lu and
Shuttleworth, 2002; Lawrence and Slingo, 2004], a method
also termed as ‘‘diagnostic phenology’’. Satellite phenolog-
ical observations are different from ground observations
since they provide a spatially integrative view of continuous
biophysical states instead of plant-specific phenological
development stages. Studer et al. [2007] demonstrate that
inter-annual SOS variability of both methods are compara-
ble even over complex terrain such as the Swiss alps when
individual ground observed species are composed into a
‘‘statistical plant’’ [Studer et al., 2005]. However the trans-
fer functions to detect SOS and EOS timing from satellite
measurements have to be chosen carefully.
[6] Current satellite sensors like MODIS [Justice et al.,

2002] or Medium Resolution Imaging Spectrometer
(MERIS) [Rast et al., 1999] used for phenological research
provide data at 1 km spatial scale with a 1–16 day revisiting
frequency. However small-scale (<500 m) topographical
variability in the order of 50 m can result in a 1–2 week
difference in SOS [Fisher et al., 2006]. Sub-pixel land cover
heterogeneity leads to substantial uncertainty in the calcu-
lation of biophysical properties from satellite radiances
[Cohen et al., 2006]. In temperate ecosystems both satellite
and ground phenological observations respond to large-
scale climate forcing while mediterranean and tropical
phenology is known to have small-scale spatial variability
[Los et al., 2001; Zhang et al., 2004; Maignan et al., 2008].
[7] Atmospheric disturbances like clouds or aerosols as

well as snow masking of vegetation limit the applicability of
diagnostic phenology data sets in climate models. Figure 1
visualizes the seasonal course and uncertainty range of
MODIS-derived LAI for four major global ecosystem types,
namely temperate deciduous, tropical evergreen, boreal
evergreen and mediterranean savanna. Only few high-qual-
ity observations (black crosses, the other curves are
explained further down) are available for the tropical
ecosystem and error bars are large because of clouds and
aerosols. Gaps are also present in the boreal ecosystem
during winter and spring because of snow cover and

missing light. Quality screening [Myneni et al., 2002;
Delbart et al., 2006] and gap filling by use of curve fitting
algorithms [Los et al., 2000; Jonsson and Eklundh, 2002;
Zhang et al., 2003; Stöckli and Vidale, 2004; Bradley et al.,
2007; Gao et al., 2008] can be applied to create continuous
and consistent time series needed to prescribe biophysical
states in climate models.
[8] While some of these methods, such as using TIMESAT

[Jonsson and Eklundh, 2002] for gap filling [Gao et al.,
2008] are very promising, spatial or temporal interpolation
generates further uncertainty in the time series. Finally,
diagnostic phenology data sets only cover the past satellite
observation period and cannot be used for, for example,
seasonal numerical weather forecast or future climate pre-
dictions [Gienapp et al., 2005].

1.3. Prognostic Phenology

[9] Models simulating the timing of phenological events
have mainly been developed for linking phenological
ground observations with climate variability. Hunter and
Lechowicz [1992] find that ground observed bud-burst can
be predicted from spring temperatures and photoperiod in
combination with a chilling requirement. White et al. [1997]
predict SOS over the continental US with an accuracy of
6–7 days and EOS with 5–6 days accuracy. They find that
temperature sums can be used to predict SOS while a more
complex combination of temperature, photoperiod and pre-
cipitation is needed for EOS depending on vegetation type.
Chuine [2000] integrates previous approaches into a gener-
alized model for SOS depending on chilling and forcing
temperatures.
[10] So-called prognostic phenology models are employed

in climate models for a continuous prediction of biophysical
states like FPAR and LAI (examples shown in Figure 1).
TRIFFID (Top-down Representation of Interactive Foliage
and Flora Including Dynamics [Cox, 2001]; component of
JULES, the Joint UK Land Environment Simulator) and IBIS
(Integrated BIosphere Simulator [Foley et al., 1996]; com-
ponent of the NCAR Community Land Model [Levis et al.,
2004]) use temperature triggers to simulate growth and decay
of leaves in temperate and boreal vegetation. TRIFFID
prognoses continuous LAI changes by use of a leaf turnover
rate while IBIS triggers instantaneous LAI changes. In CN
(prognostic Carbon-Nitrogen dynamics based on BIOME-
BGC [Thornton et al., 2002]; and component of the NCAR
Community Land Model [Thornton et al., 2007]) leaf
growth is predicted from vegetation biochemical cycling
rates coupled to the terrestrial carbon-nitrogen cycle. SOS
is triggered by cumulative soil temperature and EOS is
triggered by day-length. Drought deciduous phenology in
CN is triggered by temperature and soil moisture. In GSI
(Growing Season Index [Jolly et al., 2005]) environmental
factors based on temperature, light and humidity thresholds
concurrently control the phenological state without the use
of trigger functions.
[11] Careful interpretation is needed when comparing

prognostic phenology models to satellite observations since
most models simulate individual (for example, deciduous or
evergreen) vegetation types. This is exemplified for a
deciduous broadleaf forest (DBF) in Figure 1a: satellite
observations have a winter LAI of around 1.5 as a result of
the evergreen vegetation fraction while the modeled DBF
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LAI decays to 0 in winter. Contrasting to this, CN correctly
simulates a constant LAI for the boreal evergreen needleleaf
forest (ENF) in Figure 1c while there is a substantial
fraction of deciduous vegetation revealed by the observa-
tions during summer. Most models can simulate a mixed
phenology based on the fractional cover of individual
vegetation types (for example, CN, IBIS, TRIFFID). This
is ultimately needed for their application in global models
but it adds another level of complexity.
[12] Therefore, rather than focusing on magnitude, differ-

ences in timing should be analyzed when comparing models
and satellite observations. In Figure 1, GSI and CN are

accurate to within one week for prediction of SOS and EOS
for DBF (a), but TRIFFID and IBIS predict a too long-
growing season. Models capture the almost constant LAI of
the evergreen tropical forest (b), although IBIS decreases
LAI during the dry season and GSI displays too much
variability. Models partly fail to reproduce the constant LAI
of ENF (c). None of the models matches either timing or
phase of the drought-deciduous mediterranean grassland
phenology (d).
[13] Each prognostic model [see also e.g., Potter and

Klooster, 1999; Arora and Boer, 2005; Gibelin et al., 2006;
Dickinson et al., 2008] includes a partial set of processes

Figure 1. Prognostic LAI from four phenology parameterizations (GSI, CN, IBIS, and TRIFFID, see
introduction section for more detail) used in climate models compared to MODIS-derived LAI at a
(a) temperate deciduous broadleaf forest, (b) tropical evergreen broadleaf forest, (c) boreal evergreen
needleleaf forest, and (d) mediterranean savanna (Black crosses are the highest quality MODIS
observations, error bars show the observation uncertainty; for details see methods section).
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required to simulate global phenological variability. Figure 1
reveals significant timing differences between models and
satellite observations especially for drought-deciduous med-
iterranean ecosystems independent of model complexity.
The highly empirical model formulations were mostly
developed for temperate DBF phenology but they are
currently applied as part of decadal to centennial global
climate model predictions.

1.4. Best of Both Worlds

[14] A realistic representation of seasonal to inter-annual
phenological variability would be of benefit for models
simulating the global carbon and water cycle. It however
requires bridging the gap between knowledge available
from local-scale phenological observations and their appli-
cation in global-scale models [Cleland et al., 2007]. It also
requires taking advantage of the wealth of data contained in
diagnostic phenology data sets and applying them to reduce
uncertainty in prognostic phenology models.
[15] This study explores whether it is possible to con-

strain uncertainty in model parameters by assimilating
MODIS FPAR and LAI into the GSI phenology model. In
the next section both the data assimilation model and the
modifications to the GSI model are presented. Data assim-
ilation and model experiments are carried out at local and
regional scale covering a wide range of ecosystem types and
climate zones (Table 1). This strategy is computationally
efficient and can reveal advantages and deficiencies of the
employed methodology prior to its application in a global
scale experiment. It further allows for validation with
ground observations which are only available at local scale.

The results section firstly demonstrates the potential of data
assimilation to constrain model parameters. Seasonal FPAR
and LAI predictions using satellite-constrained parameters
are then compared to model simulations with original
parameters. Modeled inter-annual SOS and EOS variability
is finally validated against three independent ground phe-
nology data sets.

2. Methods

2.1. Models

[16] This study integrates a process model and a data
assimilation model. The prognostic phenology model pre-
dicts FPAR and LAI and is driven by meteorological
predictor data. The data assimilation model then updates
ensembles of predicted model states and empirical model
parameters with information contained in MODIS FPAR
and LAI observations.
2.1.1. Prognostic Phenology Model
[17] The GSI (Growing Season Index) by Jolly et al.

[2005] serves as the foundation for the prognostic phenol-
ogy model. It is simple and it includes the three main
climatic controls of seasonal phenological processes: min-
imum daily temperature Tm (K), mean daily global radiation
Rg (W m�2) and mean daily vapor pressure deficit vpd (mb).
Those variables are readily available from local micro-
meteorological measurements and from climate reanalysis
data sets. Note that Jolly et al. [2005] used photoperiod as
light controlling variable instead of Rg. We use Rg and argue
that it provides a year-to-year variability and therefore
responsiveness to, for example, clouds or aerosols. The

Table 1. Tower Sites and Regional Areas Used in This Studya

No. Site Lon [�E] Lat [�N] Altitude [m] Biome Type Years Climate

CarboEurope Sites (Europe)
1 Vielsalm [Aubinet et al., 2001] 6.00 50.30 450 MF 2000–2005 Temperate
2 Tharandt [Grunwald and Bernhofer, 2007] 13.57 50.96 380 ENF 2000–2003 Temperate
3 Castel Porziano [Valentini, 2003] 12.38 41.71 68 EBF 2000–2005 Mediterranean
4 Collelongo [Valentini, 2003] 13.59 41.85 1550 DBF 2000–2003 Mediterranean
5 Kaamanen [Laurila et al., 2001] 27.30 69.14 155 TUN 2000–2005 North boreal
6 Hyytiälä [Suni et al., 2003] 24.29 61.85 181 ENF 2000–2005 Boreal
7 El Saler [Ciais et al., 2005] �0.32 39.35 10 ENF 2000–2005 Mediterranean
8 Puechabon [Rambal et al., 2004] 3.60 43.74 270 DBF 2001–2005 Temperate
9 Sarrebourg [Granier et al., 2000] 7.06 48.67 300 DBF 2000–2005 Temperate

LBA Sites (Brazil)
10 Santarem KM83 [Goulden et al., 2004] �54.97 �3.02 130 EBF 2001–2003 Tropical
11 Tapajos KM67 [Hutyra et al., 2007] �54.96 �2.86 130 EBF 2002–2005 Tropical

AmeriFlux Sites (USA)
12 Morgan Monroe [Schmid et al., 2000] �86.41 39.32 275 DBF 2000–2006 Temperate
13 Boreas OBS [Dunn et al., 2007] �98.48 55.88 259 ENF 2000–2005 Boreal
14 Lethbridge [Flanagan et al., 2002] �112.94 49.71 960 GRA 2000–2004 Boreal
15 Fort Peck [Gilmanov et al., 2005] �105.10 48.31 634 GRA 2000–2005 Temperate
16 Harvard Forest [Urbanski et al., 2007] �72.17 42.54 303 DBF 1990–2006 Temperate
17 Niwot Ridge [Monson et al., 2002] �105.55 40.03 3050 ENF 2000–2004 Sub-alpine
18 Wind River [Paw U et al., 2004] �121.95 45.82 371 ENF 2000–2004 Temperate
19 Bondville [Meyers and Hollinger, 2004] �88.29 40.01 213 CRO 2000–2005 Temperate
20 Willow Creek [Bolstad et al., 2004] �90.08 45.81 520 DBF 2000–2005 Temperate
21 Tonzi Ranch [Baldocchi et al., 2004] �120.97 38.43 177 SAV 2002–2005 Mediterranean
22 Vaira Ranch [Baldocchi et al., 2004] �120.95 38.41 129 GRA 2002–2005 Mediterranean

Regional Area
23 Swiss Lowl [Rutishauser et al., 2007] 8.25 47.25 600 MF 1958–2006 Temperate

aMixed forest (MF), evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), tundra (TUN), evergreen broadleaf forest (EBF), grasslands
(GRA), savanna (SAV), croplands (CRO).
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analytic equation for GSI (�) is simply the product of three
factors f (Tm), f (Rg) and f (vpd),

GSI ¼ f Tm
� �

� f Rg

� �
� f vpd
� �

ð1Þ

f Tm
� �

¼ Tm � Tmmin

Tmmax
� Tmmin

ð2Þ

f Rg

� �
¼ Rg � Rgmin

Rgmax
� Rgmin

ð3Þ

f vpd
� �

¼ 1� vpd � vpdmin

vpdmax � vpdmin

; ð4Þ

where the empirical climate parameters Tmmax, Tmmin, Rgmax,
Rgmin, vpdmax, and vpdmin are maximum and minimum Tm,
Rg and vpd ranges. f (Tm), f (Rg) and f (vpd) vary linearly
between the constraining limits of 0 and 1, and thus regulate
vegetation activity. Tm, Rg and vpd are multi-day running
mean averages with averaging times tave(Tm), tave(Rg) and
tave(vpd) (days). Note that Jolly et al. [2005] use a 21-day
running mean GSI calculated from daily mean meteorolo-
gical variables while here running means of meteorological
variables are used to calculate GSI. Our aim is to define a
separate and optimal averaging time for each climate
variable. GSI can be interpreted as a potential phenological
state under current meteorological conditions. It is extended
by the following analytic equations into a prognostic
phenology model by defining a true prognostic phenologi-
cal state P (�), which can be related to biophysical state
variables FPAR (�) and LAI (m2 m�2) by use of Beer’s law
[Sellers et al., 1996],

P ¼ FPAR� FPARmin

FPARmax � FPARmin

ð5Þ

LAI ¼ ln 1� FPAR=fvð Þ
ln 1� FPARsatð Þ LAImax fv ð6Þ

@GSI ¼ GSI� P ð7Þ

@FPAR

@t
¼ g � @GSI � P 1� Pð Þ ð8Þ

@LAI

@t
¼ @LAI

@FPAR

@FPAR

@t
; ð9Þ

where P is derived from FPAR by linearly scaling structural
vegetation parameters FPARmin and FPARmax. These are the
minimum and maximum FPAR corresponding to the FPAR
of the evergreen vegetation fraction and the FPAR of the
fully developed deciduous and evergreen vegetation
respectively. Both parameters are static but they have
high-spatial variability. They are needed to make the

phenology model compatible with satellite observations as
demonstrated in the introduction section. FPARmax is further
closely related to the fraction of vegetation cover fv (�) by
FPARmax = fv � FPARsat. @GSI is the growth vector (�). It is
positive (or negative) when the potential phenological state
(GSI) based on current meteorological conditions is
above (or below) the current prognostic phenological state
P. g (day�1) is the maximum growth rate and P(1 � P) is a
logistic growth function which constrains growth at low and
high phenological states. The latter is needed to provide a
stable numerical solution and prevent the model from
unrealistically switching leaves on or off when meteorolo-
gical conditions change rapidly. In a mechanistic model of
plant physiology and phenology both g and P(1 � P) would
be handled by modeled biochemical cycling rates based
on nutrient availability and meteorological conditions.
FPARsat = 0.98 (�) is the FPAR value for maximum Leaf
Area Index LAImax (m

2 m�2).
[18] A semi-implicit numerical scheme is used to inte-

grate the above equations forward in time. Leaf growth
DFPAR/Dt depends on new meteorological conditions used
for calculating (GSIt+1) and the previous biophysical state
(FPARt).

Pt ¼ FPARt � FPARmin

FPARmax � FPARmin

ð10Þ

DGSI ¼ GSItþ1 � Pt ð11Þ

DFPAR

Dt
¼ g �DGSI � Pt 1� Ptð Þ ð12Þ

FPARtþ1 ¼ FPARt þDFPAR

Dt
: ð13Þ

Since the data assimilation model (see below) updates
FPAR and LAI, both states need to be prognostic. They are
thus integrated separately in time. FPARL, PL and DGSIL
are derived from LAI at every time step,

FPARt
L ¼ fv � exp

LAIt ln 1� FPARsatð Þ
LAImaxfv

� �
fv ð14Þ

Pt
L ¼ FPARt

L � FPARmin

FPARmax � FPARmin

ð15Þ

DGSIL ¼ GSItþ1 � Pt
L ð16Þ

DFPARL

Dt
¼ g �DGSIL � Pt

L 1� Pt
L

� �
ð17Þ

FPARtþ1
L ¼ FPARt

L þ
DFPARL

Dt
ð18Þ
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LAItþ1 ¼
ln 1� FPARtþ1

L =fv
� �
ln 1� FPARsatð Þ LAImax fv: ð19Þ

[19] Equations (14)–(18) can be neglected by setting
FPARL

t+1 = FPARt+1 in equation (19) if only a prognostic
FPAR with diagnostic LAI is needed, for example, if the
model is used without data assimilation, or if there are no
LAI observations.
[20] The following numerical constraint is needed: P(1 �

P) = max(P(1 � P), 0.01). During data assimilation (see
below) model parameters and states are stochastically per-
turbed at initial time and their ensemble is furthermore
continuously updated. Since this can result in unphysical
parameters or violation of the validity of the above equa-
tions, further numerical constraints were implemented in the
model. However they are not needed for operating the
model in prognostic mode: Tmmax = max(Tmmin + 1, Tmmax),
vpdmax = max(vpdmin + 1, vpdmax), Rgmax = max(Rgmin + 1,
Rgmax), FPARmin = min(FPARmin, FPARmax � 0.001), g =
min(max(g, 0.01), 5), LAI = max(min(LAImaxfv, LAI), 0),
FPAR = min(max(FPARmin, FPAR), FPARmax)).
2.1.2. Data Assimilation Model
[21] The Ensemble Kalman Filter (EnKF) after Evensen

[1994, 2003] is a sequential data assimilation model. It is
applied in this study with modifications for joint state and
parameter estimation following Moradkhani et al. [2005].
EnKF is a Monte Carlo-based algorithm that propagates N
a-priori model ensemble forecasts forward in time and
creates a posterior model state and parameter ensemble by
the analysis of both the observation and model uncertainty,

Aa ¼ A f þK D�HA f
� �

; ð20Þ

where A f is the ensemble matrix containing predicted model
states (from equations (13) and (19)) and model parameters.
They are updated to Aa when new observations D become
available. H is the operator relating observed to model states
and K is the Kalman gain (for details see Evensen [2003]).
A is a matrix holding N ensemble members of the vector y

with n states and parameters. D is the matrix holding N
ensemble members of the vector d with m observations,

A ¼ y1;y2; . . . ;yNð Þ 2 <n	N ð21Þ

D ¼ d1; d2; . . . ; dNð Þ 2 <m	N : ð22Þ

[22] The state and parameter ensemble members yi
0 with

i = 1. . .N are initialized at the beginning of the model
integration by defining an uncertainty vector w. This vector
has a Gaussian distribution with mean 0 and initial variance
Vy
0 and is added to the initial states x0 and parameters q0,

y0
i ¼ x0; q0

� �
þ wi; i ¼ 1 . . .N ; w 
 N 0;V 0

y

� �
: ð23Þ

[23] Similarly, the observation ensemble members di with
i = 1. . .N are built each time when observations become
available. � is the observation uncertainty vector which has
a Gaussian distribution with mean 0 and observation vari-
ance Vd,

di ¼ d þ �i; i ¼ 1 . . .N ; � 
 N 0;Vdð Þ: ð24Þ

[24] The elements of y, their initial values y0 as well as
initial variances Vy

0 used in this study are defined in Table 2.
The initial ensemble needs to be carefully chosen in order to
successfully apply the EnKF analysis. Choice of unrealistic
initial parameters or too small initial variances can result in
over-dispersion of parameter ensembles and run-away
effects during data analysis. We started from climate control
parameters similar to those given by Jolly et al. [2005] and
also chose parameter variances encompassing the physical
range of a global climate (for example, 50 K for temperature
control parameters). The outcome of the analysis is also
highly connected to the ensemble size N [Evensen, 2003].
For n = 15 we found that N > 1000 gave sufficiently stable
assimilation results, so N = 2000 was chosen.
[25] Estimating hidden parameters by use of the EnKF-

based joint state and parameter estimation can result in
over-shrinkage of covariances. When parameter ensembles
become too narrow observations progressively have smaller
impact [Anderson and Anderson, 1999; Aksoy et al., 2006].
Especially vegetation structural parameters (for example,
FPARmin) converged more rapidly than climate control
parameters (for example, Tmmin) in our initial experiments,
resulting in a too constrained ensemble matrix which cannot
respond to new observations. The following ‘‘kernel per-
turbation’’ routine was developed (similar to the inflation
factor by Anderson [2001]) to keep the ensemble variance
above a pre-defined threshold,

A ¼ A� A
� � ffiffiffiffi

a
p

þ A ð25Þ

a ¼ max bV 0
y=Vy; 1

� �
ð26Þ

where A is a vector containing the ensemble mean of each
element of y. a is a vector of scaling factors, which keep
the ensemble variances for y above b = 0.0001 times the
initial ensemble variances of y. The above formulation does
not modify the shape of the ensemble distribution, but only
scales its variance.

Table 2. State and Parameter Vector y, Initial Values y0 and

Initial Variances Vy
0

No. Variable y0 Vy
0 Units

States x
1 FPAR 0.5 0.5 –
2 LAI 2.5 5 m2 m�2

Parameters q
3 Tmmax 280 50 K
4 Tmmin 270 50 K
5 Rgmax 200 500 W m�2

6 Rgmin 100 500 W m�2

7 vpdmax 30 50 mb
8 vpdmin 10 50 mb
9 FPARmin 0.4 0.05 –
10 LAImax 2.5 2 m2 m�2

11 g 0.33 0.05 day�1

12 fv 0.5 0.05 –
13 tave(Tm) 21 5 day
14 tave(Rg) 21 5 day
15 tave(vpd) 21 5 day

G04021 STÖCKLI ET AL.: DATA ASSIMILATION AND PHENOLOGY MODELING

6 of 19

G04021



2.1.3. Combining the Prognostic Phenology
and the Data Assimilation Model
[26] At the beginning of each data assimilation experi-

ment phenological state and parameter ensembles are ini-
tialized after equation (23) with initial values and variances
defined in Table 2. The prognostic phenology model is
integrated forward in time. At each time step the prognostic
phenology model forecasts ensembles of states xt+1 =
[FPARt+1, LAIt+1] from previous states xt and parameters
q driven by averaged meteorological predictors Tm

t+1, Rg
t+1

and vpdt+1. This is like running N separate instances of the
phenology model, each one having its distinct parameter set
qi (i = 1. . .N). Only at times when there are two or more
observations (for example, m = 2 for one FPAR and one
LAI observation; but m � 98 for 7 	 7 km areas as
specified below) the above described EnKF-based data
assimilation model is applied as follows:
[27] 1. D is calculated after equations (22) and (24) with

mean values and variances as defined in the data section
(see below).
[28] 2. Af is defined after equation (21) from forecasted

state and parameter ensembles.
[29] 3. HA is calculated as an m 	 N matrix containing

modeled FPARt+1 and LAIt+1 for each observed FPAR and
LAI ensemble.
[30] 4. Aa is calculated by use of the square root imple-

mentation of the EnKF scheme as presented in Evensen
[2004].
[31] 5. Kernel perturbation after equations (25) and (26) is

applied to Aa.
[32] Aa now contains analyzed state and parameter

ensembles updated with information gained from the
assimilated observations. Analyzed states and parameters
are then used for the next prognostic phenology model
forecast.

2.2. Data

2.2.1. Meteorological Predictor Data
[33] The prognostic phenology model needs daily mini-

mum temperature Tm, daily mean global radiation Rg and
daily mean vapor pressure deficit vpd as meteorological
predictor data. For local-scale simulations at CarboEurope,
Large-Scale Biosphere-Atmosphere Experiment in Amazonia
(LBA) and AmerFlux flux tower sites (1–22, Table 1) these
data are calculated from 300 and 600 gap-filled flux tower
measurements [Stöckli et al., 2008]. The regional-scale
simulation (23, Table 1) uses 1� 	 1� gridded ECMWF
ERA-40 (1958–2001) and Analysis/Forecast (2002–2006)
data at 6 hourly intervals [Uppala et al., 2005].
[34] For data assimilation the ensemble members of Tm,

Rg and vpd are stochastically perturbed at each time step
with a variance of 0.5 K, 5 W m�2 and 0.5 mb, respectively.
2.2.2. Assimilation Satellite Data
[35] TERRA MODIS 1 km/8 day FPAR and LAI data

(MOD15A2, Collection 4) are used to fill the observation
matrix D. Tower-centered 7 km 	 7 km MODIS ascii data
sets (Oak Ridge National Laboratory MODIS Land Subsets,
http://www.modis.ornl.gov/modis) are used for experiments
1–22, while 0.25� 	 0.25� areas derived from standard
MODIS tiles are used for the regional experiment 23. Data
are screened by land-cover class (Table 1) by use of the
TERRA MODIS land cover product (MOD12Q1,

Collection 4, year 2004). MOD15A2 data are quality
screened and not used if they have either a fill value, or a
value outside the valid range, or if any of the following
quality flag bits are set: (1) FparLai bit 1 (not produced:
cloud or other reasons); (2) FparLai bit 2 (dead detectors);
(3) FparLai bits 3 or 4 (clouds present or unclear);
(4) FparLai bit 7 (could not retrieve pixel); (5) FparExtra
bit 2 (snow or ice); (6) FparExtra bit 5 (internal cloud
mask); and (7) FparExtra bit 6 (cloud shadow).
[36] The observation vector d contains the m remaining

observations. The ensemble observation matrix D is created
by stochastically perturbing each element of d with an
uncertainty measure Vd (equation (24)) based on the remain-
ing MOD15A2 quality flag bits: minimum uncertainty Vd

for each observation is defined as 10% of the maximum
observation range (maximum observation range is 1 for
FPAR and 10 for LAI). For each of the following
MOD15A2 quality flag bits 25% of the maximum observa-
tion range multiplied by a ‘‘severity factor’’ s is added to the
minimum Vd, if the bit is set: (1) FparLai bit 0 (produced
but not the best), s = 4; (2) FparLai bit 6 (main RT is
saturated), s = 3; (3) FparLai bit 7 (empirical method used),
s = 3; (4) FparExtra bit 3 (aerosol is average or high), s = 8;
and (5) FparExtra bit 4 (cirrus clouds detected), s = 7.
[37] Pixel-by-pixel variability provides a further uncer-

tainty measure and effectively perturbs the observation
ensemble: for example, it is high when land cover is not
homogeneous or when sub-pixel clouds (not captured by the
MOD15A2 quality flag bits) are present. Characterization of
observation uncertainty as a weighting tool for the data
assimilation procedure ensures that only high-quality obser-
vations are assimilated into the model.
2.2.3. Validation Phenology Data
[38] Independent validation data is obtained from ground

measurements of biophysical state variables, from site-
based phenological observations and from historical pheno-
logical reconstructions. Such data sets are sparse and do not
cover the full climatic range. Validation is complicated by
the fact that modeled biophysical states are not compatible
with traditional phenological metrics and thus transfer
functions need to be developed in order to perform com-
parative studies [Studer et al., 2007]. To overcome this gap
SOS and EOS are determined from the model as the time of
half greenness by depicting the day in each year when the
LAI crosses a 50% threshold between the maximum and
the minimum LAI, the latter two being determined from the
whole time series. For each of the phenological validation
data sets SOS and EOS are calculated as follows:
[39] 1. Validation data for Morgan Monroe (12) consists

of ground-based LAI measurements by use of LICOR-2000
devices [Jonkheere et al., 2004] for the period 2000–2006.
LAI is estimated as the mean from measurements along 3
main transects. Dominant tree species in the transects and in
the vicinity of the tower are sugar maple (Acer saccharum),
tulip poplar (Liriodendron tulipifera), sassafras (Sassafras
albidum), white oak (Quercus alba), and black oak (Quercus
nigra). SOS and EOS are determined from the observed
LAI like for modeled LAI (see above). Uncertainty in SOS
and EOS was defined as the measurement interval length at
the time of threshold crossing (can vary between a few days
and weeks). SOS and EOS were also derived from Net
Ecosystem Exchange (NEE) measured at Morgan Monroe.
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SOS is the day when daily NEE consistently becomes
negative in spring and EOS is the day when daily NEE
consistently become positive in autumn.
[40] 2. Validation data for Harvard Forest (16) consists of

a 17-year-long set of observations of phenological spring
and autumn phases for the period 1990–2006 covering
three dominant tree species located within 1.5 km of the
tower site (http://harvardforest.fas.harvard.edu/data/p00/
hf003/hf003.html). The species used for this study are red
oak (Quercus rubra), white oak (Quercus alba) and red
maple (Acer rubrum). Only dominant species are used in
order to be consistent with the satellite view, and temporal
consistency is guaranteed: for each year there is at least one
individual of each species for each of the phenological
phases observed. SOS is calculated from the mean of spring
phases bud-burst and 75% leaf development. EOS is calcu-
lated from the mean of the autumn phases leaf coloring and
leaf fall. SOS and EOS are the day of year when 50% of all
individuals of a species reach a phenological phase. Uncer-
tainty in SOS and EOS are calculated as the standard
deviation of SOS and EOS between individuals of a species,
and is averaged among species.
[41] 3. Validation data for the Swiss Lowland (23) con-

sists of a 1959–2006 SOS time-series derived from a
statistical ‘‘Spring Plant’’ by Rutishauser et al. [2007].
The ‘‘Spring Plant’’ is defined as the weighted annual mean

day of year for beech bud burst (Fagus sylvatica) and full
flowering of the cherry (Prunus avium) and apple (Malus
domesticus) trees. In Switzerland, these phases occurred on
average on 28 April, 23 April, and 7 May during the 1951–
2006 period. ‘‘Spring plant’’ dates are based on 26–73
observations per year from 8 to 23 reporting stations of the
Swiss Phenological Network (SPN) [Defila and Clot, 2001].
Taking into account observation variability, uncertainties
and station bias decadal uncertainties are associated with a
standard deviation of ±5 days.

2.3. Experimental Setup

[42] Three experiments are performed for each site in
Table 1:
[43] 1. ORIGINAL: integrating the original GSI phenol-

ogy model [Jolly et al., 2005] with original parameters for
all years with available meteorological predictor data.
[44] 2. ANALYSIS: integrating the combined prognostic

phenology and data assimilation model with 2000 ensem-
bles to estimate model parameters for the MODIS observa-
tion period 2000–2006.
[45] 3. PROGNOSTIC: integrating only the prognostic

phenology model with new parameters (estimated in
ANALYSIS) for all years with available meteorological
predictor data.

Figure 2. ANALYSIS model simulations: joint estimation of (a) biophysical states (FPAR), structural
vegetation parameters (FPARmin, FPARmax) and (b) climate control parameters (Tmmin, Tmmax, Rgmin and
Rgmax) by use of EnKF (Black crosses are the highest quality MODIS observations, error bars show the
observation uncertainty; for details see methods section).
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[46] All simulations are repeated 3 times in order to
satisfy spin-up (PROGNOSTIC) and for extending the data
assimilation period (ANALYSIS). Initial parameter and
state values for ANALYSIS are given in Table 2. Climate
control parameters for ORIGINAL are from in Jolly et al.
[2005], complemented with the following structural vege-
tation parameters: FPARmin = 0.05, fv = 0.95, LAImax = 6.5. g
is not needed since GSI is not a prognostic model. FPAR or
LAI are directly diagnosed from GSI at every time step by
setting P = GSI and applying equations (5) and (6).

3. Results

[47] The following analysis reveals key phenological
parameters resulting from the data assimilation experiment.
We further evaluate the applicability of the data assimilation
framework for predicting the seasonal course of FPAR and
LAI in a number of climate zones and then validate our
model results on the inter-annual to decadal time scale by
use of independent phenological ground observations.

3.1. Parameter Uncertainty Reduction

[48] Parameters from the ANALYSIS model where the
ensemble standard deviation is reduced below 20% of their
initial uncertainty (Table 2) are considered successfully
constrained. A 3-year-long data assimilation for site 12
(Morgan Monroe) is exemplified in Figure 2: model states
(for example, FPAR) and model parameters (for example,
FPARmin, FPARmax, Tmmin, Tmmax, Rgmin, Rgmax) are contin-
uously adjusted and their uncertainty is reduced by assim-
ilation of MODIS observations.
3.1.1. Climate Control Parameters
[49] Table 3 reveals a strong uncertainty reduction of both

Tmmin and Tmmax temperature control parameters at temper-
ate deciduous broadleaf forest (DBF) and mixed forest (MF)

sites 1, 8, 12, 16, 20 and 23. The strongest constraint results
for Morgan Monroe (site 12) where Tmmin = 276.3 ± 0.3 K
and Tmmax = 278.9 ± 0.2 K encompass a narrow temperature
band with uncertainties being only about 4% of their initial
ranges. DBF mean Tmmin is 272.8 ± 2.4 K and mean Tmmax

is 278.8 ± 2.3 K, respectively, both being slightly higher but
similar to Tmmin = 271.1 K and Tmmax = 278.1 K estimated
by Jolly et al. [2005].
[50] Evergreen needleleaf forest (ENF) sites 6, 13, 17 and

18 have a mean Tmmax = 277.7 ± 1.5 K. Only for sites 6 and
17 is Tmmin sufficiently constrained to 268.6 ± 0.8 K. Both
temperature control factors are lower for ENF compared to
DBF. The seasonality detected here only accounts for the
phenology of the deciduous vegetation fraction in evergreen
needleleaf forests. The needleleaf forest itself would have a
constant FPAR which is equal to FPARmin.
[51] Most DBF sites which successfully constrained tem-

perature parameters also have strong light constraints
(Table 3). Again, site 12 has the clearest signal with
Rgmin = 92.1 ± 1.6 W m�2 and Rgmax = 176.6 ± 1.0 W m�2.
DBF mean Rgmin = 102.3 ± 11.0 W m�2 and Rgmax = 166.6 ±
22.8 W m�2 (sites 4, 12, 16 and 20).
[52] Light control parameters for the agricultural site

Bondville (19) are more than 50 W m�2 higher than for
DBF sites. Rgmax is weakly constrained for both the tropical
site Santarem KM83 (10) and for the mediterranean grass-
land site Vaira Ranch (22). The lower bound Rgmin however
cannot be clearly identified there.
[53] Mediterranean ecosystems, where none of the other

climate controls could be clearly identified, show success
with moisture control parameters: at Tonzi Ranch (21) and
Vaira Ranch (22) the uncertainties of vpdmin and vpdmax are
strongly reduced to less than 7% and 10% of their initial
uncertainty respectively (Table 3).

Table 3. Climate Control Parameters and Uncertainties Resulting From the ANALYSIS Model Simulationa

No. Tmmin Tmmax Rgmin Rgmax vpdmin vpdmax

1 269.8 ± 2.0 278.8 ± 0.8c 69.6 ± 9.9 228.9 ± 7.3 2.0 ± 1.6 33.2 ± 3.8
2 267.1 ± 4.0 282.8 ± 2.4 89.4 ± 16.2 178.3 ± 12.6 2.2 ± 3.2 31.0 ± 4.6
3 266.7 ± 3.4 279.1 ± 2.0 69.1 ± 10.8 210.2 ± 7.3 2.5 ± 1.8 37.4 ± 3.5
4 255.7 ± 5.3 267.5 ± 3.4 85.3 ± 8.0 187.6 ± 3.3c 6.2 ± 0.7b 35.3 ± 4.8
5 264.2 ± 1.6 289.7 ± 1.6 21.6 ± 14.1 192.4 ± 9.7 11.2 ± 4.4 30.9 ± 4.6
6 268.6 ± 1.1c 277.9 ± 0.6b �38.6 ± 11.7 212.7 ± 5.9 10.1 ± 1.3c 37.0 ± 4.5
7 284.3 ± 1.4c 291.2 ± 1.0c 148.7 ± 16.8 256.9 ± 13.0 10.7 ± 3.8 31.4 ± 4.4
8 272.5 ± 2.2 282.5 ± 0.9c 101.8 ± 9.7 207.4 ± 6.8 13.9 ± 1.4c 39.7 ± 3.3
9 261.7 ± 4.0 277.9 ± 2.3 62.1 ± 11.7 199.7 ± 7.5 0.8 ± 1.6 34.1 ± 4.0
10 270.3 ± 5.8 284.7 ± 4.4 94.3 ± 16.2 165.3 ± 2.8c 19.8 ± 1.9 38.4 ± 3.6
11 265.7 ± 6.7 279.0 ± 5.3 72.3 ± 17.1 144.4 ± 5.6 10.8 ± 2.6 34.7 ± 4.7
12 276.3 ± 0.3b 278.9 ± 0.2b 92.1 ± 1.6b 176.6 ± 1.0b 15.7 ± 2.2 37.5 ± 3.2
13 256.0 ± 1.9 279.6 ± 1.0c 45.2 ± 12.8 196.8 ± 5.2 7.9 ± 0.9c 30.7 ± 2.9
14 262.5 ± 2.7 277.0 ± 1.4c 65.4 ± 12.8 226.9 ± 9.2 6.9 ± 1.4c 25.5 ± 2.2
15 259.5 ± 2.1 282.6 ± 1.1c 140.3 ± 8.2 229.6 ± 5.5 2.9 ± 1.5 30.3 ± 2.2
16 273.8 ± 0.7b 277.4 ± 0.4b 101.0 ± 2.8c 138.4 ± 1.5b 21.5 ± 1.6 34.5 ± 3.0
17 268.6 ± 0.5b 275.9 ± 0.3b 105.2 ± 8.9 246.4 ± 3.0c 4.1 ± 0.6b 32.6 ± 3.1
18 269.4 ± 1.7 277.5 ± 0.5b �10.1 ± 13.5 177.1 ± 6.2 13.0 ± 2.0 35.6 ± 4.0
19 273.7 ± 1.2c 287.5 ± 0.5b 151.8 ± 2.7c 252.3 ± 1.8b 21.4 ± 2.8 35.2 ± 2.8
20 271.7 ± 0.4b 276.4 ± 0.4b 113.9 ± 3.9c 184.9 ± 1.4b 28.0 ± 3.8 37.9 ± 3.4
21 253.9 ± 4.0 271.9 ± 2.0 2.6 ± 7.6 191.7 ± 6.9 4.9 ± 0.3b 12.6 ± 0.6b

22 255.1 ± 4.1 268.5 ± 2.2 83.3 ± 5.0 187.5 ± 4.2c 7.2 ± 0.5b 13.5 ± 0.7b

23 270.8 ± 0.6b 278.5 ± 0.3b 45.8 ± 7.3 162.2 ± 2.9c �0.9 ± 1.3c 40.9 ± 2.7
aBold numbers show successfully constrained parameters.
bBelow 10% of initial uncertainty.
cBelow 20% of initial uncertainty.
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[54] For some ENF sites vpdmin can be estimated, but not
vpdmax. Surprisingly the phenology of the two tropical sites
10 and 11 and the agricultural site 19 do not reveal any
moisture controls.
3.1.2. Structural Vegetation Parameters
[55] Table 4 demonstrates that FPARmin and fv are suc-

cessfully constrained since uncertainties are mostly below
10% of initial uncertainty. For the tropical site KM83 (10) fv
(and therefore FPARmax) can be constrained, but not
FPARmin. Only few observations provide a good constraint
of FPARmin since low FPAR and LAI values for tropical
areas coincide with higher uncertainty in observations (for
example, Figure 3b). Mean LAImax is 6.14 ± 0.79 for forests
and 3.91 ± 0.74 for short vegetation.

[56] Maximum growth-rate g is more difficult to estimate
than the other structural vegetation parameters. It is gener-
ally lower for boreal sites (for example, 0.12 day�1 for
Kaamanen) than for temperate sites (for example, 0.76 day�1

for Morgan Monroe). Mean g is 0.24 day�1 and has a high
site-by-site variability of 0.23 day�1. Since g is a surrogate
for complex biochemical processes controlling the rate of
leaf development a generalized value may not be realistic.
g only influences the duration of phenological events and
is therefore only weakly constrained by a short observation
window each year.
3.1.3. Time Averaging Parameters
[57] The use of data assimilation for estimating time

averaging parameters was highly unsuccessful. For none of

Figure 3. PROGNOSTIC model simulations: prognostic FPAR and LAI compared to MODIS FPAR
and LAI at a (a) temperate deciduous broadleaf forest, (b) tropical evergreen broadleaf forest, (c) boreal
evergreen needleleaf forest, and (d) mediterranean savanna (Black crosses are the highest quality MODIS
observations, error bars show the observation uncertainty; for details see methods section).
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the sites the uncertainties in the time averaging parameters
are sufficiently reduced below 20% of initial uncertainty.

3.2. Prediction of Seasonal Phenology

[58] The PROGNOSTIC model with parameters con-
strained by the data assimilation is now compared to the
ORIGINAL model with parameters after Jolly et al. [2005].
The aim of this section is to document the ability of the
model to predict ‘‘MODIS-like’’ FPAR and LAI without the
help of satellite data. The correlation coefficient (R) and
the root mean square error (RMSE) are calculated by
comparing daily MODIS-observed and model-predicted
FPAR and LAI values for different climate zones.
3.2.1. Temperate
[59] The ORIGINAL model already has accurate spring

and fall timing for DBF ecosystems like, for example,
Morgan Monroe (red curve in Figure 1a) since temperature
control factors are only slightly higher (see previous sec-
tion) in PROGNOSTIC than in ORIGINAL. While R for
FPAR only rises from 0.86 in ORIGINAL to 0.93 in
PROGNOSTIC (Table 5), RMSE for FPAR and LAI is less
than halved. The mixed forest site Swiss Lowland (23) has
the highest RMSE for LAI among all temperate forests. It
encompasses a much larger area than the other sites and
most likely has substantial subgrid-scale variability in
FPARmin and FPARmax.
[60] Figure 4a sheds light on the underlying climatolog-

ical processes governing seasonal phenology: temperature
controls the rapid greenup in April (temperature factor rises
after light factor) and light controls senescence in October
(light factor decreases before temperature factor). The
narrow range of Tmmin and Tmmax and a concurrently high
g (Tables 3 and 4) create a short positive peak of the growth
vector DGSI in April. Its negative counterpart in autumn is

less well defined because of the slightly broader range of
Rgmin and Rgmax.
3.2.2. Tropical
[61] Low or no correlation is found for tropical sites (10,

11), either with the ORIGINAL or with the PROGNOSTIC
model (Table 5). The two sites have constantly high FPAR
and LAI constrained only by a few good quality observa-
tions during data assimilation. Furthermore correlation is
not a suitable metric for a constant time-series. RMSE on
the other hand decreases for FPAR and is halved for LAI at
both sites.
[62] Figure 3b reveals a decreased LAI during the wet

season (March–June) and leaf growth at the beginning of
the dry season (July–August) simulated by PROGNOSTIC.
The underlying climatological drivers shown in Figure 4b
demonstrate that during the wet season light controls the
phenological cycle for tropical EBF, and not humidity
during the dry season as assumed by many other models.
3.2.3. Boreal
[63] Correlation for Boreal ENF either becomes worse

(site 6) or only slightly better (site 13) in PROGNOSTIC
compared to ORIGINAL. As already found for the tropical
sites R is not a suitable metric for evergreen ecosystems.
However RMSE is substantially lowered to the order of
10% of FPAR and LAI magnitude by use of more realistic
structural vegetation parameters such as the evergreen
vegetation fraction (FPARmin). Figure 3c for instance shows
a minimum LAI of around 2 corresponding to an FPARmin

of around 0.6 for site BOREAS Old Black Spruce (13).
[64] Figure 3c suggests that SOS of the ENF’s deciduous

cover is missed by 1–2 weeks and that EOS is predicted as
a process much too gradual. Figure 4c reveals that SOS is
gradually initiated by temperature and later influenced by
light while EOS is initiated by light but later modulated by

Table 4. Structural Vegetation Parameters and Uncertainties

Resulting From the ANALYSIS Model Simulationa

No. FPARmin fv LAImax g

1 0.70 ± 0.01b 0.88 ± 0.02b 6.05 ± 0.24c 0.33 ± 0.07
2 0.65 ± 0.02b 0.81 ± 0.04c 5.67 ± 0.53 0.38 ± 0.10
3 0.76 ± 0.01b 0.95 ± 0.02b 6.85 ± 0.40 0.37 ± 0.08
4 0.51 ± 0.02b 0.97 ± 0.03c 6.52 ± 0.26c 0.40 ± 0.08
5 0.65 ± 0.01b 0.93 ± 0.03c 6.05 ± 0.31 0.12 ± 0.02b

6 0.73 ± 0.01b 0.94 ± 0.02b 6.67 ± 0.19c 0.08 ± 0.01b

7 0.25 ± 0.03c 0.75 ± 0.04c 4.39 ± 0.46 0.37 ± 0.08
8 0.80 ± 0.00b 0.84 ± 0.00b 3.99 ± 0.04b 0.48 ± 0.07
9 0.62 ± 0.02b 0.97 ± 0.03c 5.96 ± 0.33 0.27 ± 0.08
10 0.63 ± 0.05 0.91 ± 0.02b 6.50 ± 0.19c 0.34 ± 0.08
11 0.75 ± 0.04c 0.90 ± 0.02b 6.61 ± 0.21c 0.37 ± 0.11
12 0.50 ± 0.00b 0.98 ± 0.01b 6.36 ± 0.04b 0.76 ± 0.03c

13 0.64 ± 0.02b 0.98 ± 0.02b 6.76 ± 0.33 0.11 ± 0.01b

14 0.19 ± 0.01b 0.56 ± 0.03c 3.11 ± 0.25c 0.35 ± 0.07
15 0.15 ± 0.01b 0.62 ± 0.03c 3.39 ± 0.22c 0.61 ± 0.09
16 0.71 ± 0.01b 0.95 ± 0.01b 6.29 ± 0.09b 0.58 ± 0.07
17 0.60 ± 0.01b 0.93 ± 0.01b 5.56 ± 0.13b 0.27 ± 0.04c

18 0.84 ± 0.01b 0.92 ± 0.01b 6.78 ± 0.08b 0.14 ± 0.04c

19 0.31 ± 0.00b 0.73 ± 0.01b 3.88 ± 0.07b 0.59 ± 0.05
20 0.51 ± 0.01b 0.94 ± 0.01b 6.26 ± 0.10b 0.77 ± 0.05
21 0.58 ± 0.01b 0.92 ± 0.02b 5.00 ± 0.15c 0.22 ± 0.04c

22 0.67 ± 0.01b 0.82 ± 0.01b 4.17 ± 0.08b 0.76 ± 0.10
23 0.74 ± 0.01b 0.91 ± 0.01b 7.06 ± 0.25c 0.29 ± 0.06

aBold numbers show successfully constrained parameters.
bBelow 10% of initial uncertainty.
cBelow 20% of initial uncertainty.

Table 5. FPAR and LAI Performance for the ORIGINAL and the

PROGNOSTIC Model Simulationsa

No.

ORIGINAL PROGNOSTIC

FPAR LAI FPAR LAI

1 0.55 (0.31) 0.32 (2.90) 0.56 (0.09) 0.37 (0.95)
2 0.62 (0.30) 0.34 (2.95) 0.68 (0.08) 0.39 (0.96)
3 0.82 (0.41) 0.71 (2.33) 0.85 (0.04) 0.77 (0.76)
4 0.86 (0.28) 0.80 (2.04) 0.92 (0.08) 0.87 (1.02)
5 0.48 (0.26) 0.31 (2.06) 0.49 (0.14) 0.46 (0.73)
6 0.72 (0.28) 0.61 (2.18) 0.66 (0.18) 0.66 (1.09)
7 0.47 (0.38) 0.49 (4.41) 0.82 (0.14) 0.85 (0.50)
8 0.46 (0.42) 0.64 (2.63) 0.55 (0.06) 0.66 (0.61)
9 0.80 (0.29) 0.64 (2.55) 0.84 (0.07) 0.70 (0.87)
10 0.00 (0.16) 0.00 (2.39) 0.18 (0.12) 0.27 (1.22)
11 0.40 (0.16) 0.33 (2.13) 0.15 (0.13) 0.34 (1.29)
12 0.86 (0.23) 0.91 (1.24) 0.93 (0.08) 0.97 (0.62)
13 0.76 (0.30) 0.69 (1.89) 0.77 (0.17) 0.78 (0.89)
14 0.64 (0.31) 0.47 (2.69) 0.82 (0.08) 0.80 (0.18)
15 0.76 (0.34) 0.66 (3.31) 0.90 (0.06) 0.90 (0.12)
16 0.73 (0.34) 0.90 (1.55) 0.74 (0.14) 0.92 (0.79)
17 0.67 (0.37) 0.67 (1.69) 0.70 (0.13) 0.78 (0.67)
18 0.60 (0.40) 0.44 (2.78) 0.65 (0.08) 0.60 (1.43)
19 0.76 (0.27) 0.74 (3.27) 0.93 (0.09) 0.83 (0.57)
20 0.89 (0.19) 0.89 (1.23) 0.90 (0.09) 0.95 (0.72)
21 �0.10 (0.40) �0.15 (3.90) 0.80 (0.07) 0.83 (0.53)
22 �0.13 (0.41) �0.22 (3.73) 0.71 (0.09) 0.79 (0.61)
23 0.59 (0.10) 0.47 (2.14) 0.66 (0.08) 0.56 (1.05)

aR and RMSE (in brackets) are calculated from daily comparisons of
modeled to MODIS FPAR and LAI. For bold numbers R is significant with
p < 0.0001 (two-tailed T-test, m0: R = 0).
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temperature. During the short summer growing period
neither light nor temperature but rather moisture constrains
leaf development for the ENF’s deciduous cover.
3.2.4. Mediterranean
[65] Highest increase in R and strongest decrease in

RMSE for both FPAR and LAI is found for drought-
deciduous mediterranean ecosystems (sites 7, 21 and
22, Table 5). For Tonzi Ranch (21) R increases from
�0.1 (FPAR) and �0.15 (LAI) to 0.8 (FPAR) and 0.83
(LAI) while RMSE decrease from around 50% to less than
10% of their maximum parameter range (0–1 for FPAR and
around 0–7 for LAI).
[66] Figures 1d and 3d document improvements in pre-

dicting drought-deciduous phenology for a mediterranean

ecosystem like Tonzi Ranch (21). A few years of satellite
data can successfully yield phenological parameters for this
ecosystem. Figure 4d reveals that light constrains pheno-
logical development in winter (November–March) while a
prolonged drought period inhibits leaf growth in summer
(June–November). The growth vector DGSI shows the
opposite seasonal cycle compared to temperate deciduous
phenology: it is negative in late spring and positive in
autumn when the dry season is over.

3.3. Validation of Inter-Annual Variability

3.3.1. Morgan Monroe
[67] PROGNOSTIC has high skill to reproduce MODIS

LAI with R = 0.97 (Table 5) and also compares well to site-

Figure 4. PROGNOSTIC model simulations: factors controlling the growth vector DGSI/Dt of the
prognostic phenology model in response to the environmental predictors temperature, light and moisture
at a (a) temperate deciduous broadleaf forest, (b) tropical evergreen broadleaf forest, (c) boreal evergreen
needleleaf forest, and (d) mediterranean savanna.
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measured LAI with R = 0.90 (not shown). The ORIGINAL
model has a lower R = 0.84 (not shown) when compared to
site-measured LAI. However RMSE for PROGNOSTIC is
higher (1.65, not shown) compared to ORIGINAL (1.09,
not shown) which is mainly because PROGNOSTIC (and
MODIS) LAI rises above 6 while site-measured LAI
saturates at around 5. Since the MODIS assimilation area
covers 49 km2 and the validation transect only roams a few
km2, such structural vegetation parameter differences can
occur.
[68] The coarse and irregular LAI measurement interval

leads to a high uncertainty of 1–2 weeks for measured SOS
and EOS (Figure 5). PROGNOSTIC has some skill to
predict 2000–2006 SOS (Table 6, R = 0.40, compared to
R = 0.23 for ORIGINAL), but predicted SOS is around
12 days early. Correlation rises to 0.64 (significant only with
p< 0.1) and bias is reduced to 2.4 days if PROGNOSTIC SOS
is compared to SOS derived from site-measured NEE.
[69] Neither ORIGINAL nor PROGNOSTIC have skill to

reproduce EOS variability (Table 6 and Figure 5). EOS
derived from NEE is similarly accurate in absolute timing

(EOS bias = �1.7 days), but there is no predictive skill in
PROGNOSTIC to reproduce EOS variability (R = 0.1, not
significant).
3.3.2. Harvard Forest
[70] Skill for predicting SOS is much higher for

PROGNOSTIC (R = 0.82; significant with p < 0.0001;
Table 6) than for ORIGINAL (R = 0.51). Although bias is
reduced in PROGNOSTIC, SOS occurs three weeks early
compared to site-observed SOS. As shown in Figure 6
PROGNOSTIC precisely captures early springs of 1991,
1993, 1998, 2001 and 2004 with a similar inter-annual
variability as seen from the observations. ORIGINAL
especially misses late years 1997 and 2005 as well as early
years 2001 and 2004.
[71] As for Morgan Monroe EOS variability cannot be

reproduced by either ORIGINAL or PROGNOSTIC.
Figure 6 shows that many years are anti-correlated, such
as 1994 and 2002 for ORIGINAL and 1996, 2003 and 2004
for PROGNOSTIC. Bias furthermore increases for
PROGNOSTIC which indicates that leaf coloring and leaf
fall of the selected species (oak and beech) may not be
representative for the large-scale signal from MODIS.

Figure 5. ORIGINAL and PROGNOSTIC model simulations: SOS and EOS for a deciduous broadleaf
forest in eastern US validated with radiatively measured ground LAI for 2000–2006.

Table 6. Validation: Correlation R and Bias (in Brackets) of Observed Versus Predicted SOS and EOS for the ORIGINAL and

PROGNOSTIC Modelsa

Site Obs. Method Threshold Years

ORIGINAL PROGNOSTIC

SOS EOS SOS EOS

Morgan Monroe LAI 50% 2000–2006 0.23 (6.4) �0.05 (3.3) 0.40 (�12.3) �0.42 (1.0)
Morgan Monroe NEE 50% 2000–2006 �0.37 (18.4) 0.05 (14.7) 0.64 (2.4) 0.16 (�2.2)
Harvard Forest SPC 50% 1990–2006 0.51 (�42.2) �0.44 (�7.1) 0.82 (�23.7) �0.17 (�28.9)
Swiss Lowland SPC 50% 1958–2006 0.55 (�4.5) - 0.60 (�4.8) -
Swiss Lowland SPC 25% 1958–2006 0.53 (�31.7) - 0.73 (�18.5) -
Swiss Lowland SPC 75% 1958–2006 0.63 (20.8) - 0.52 (4.3) -

aSite-measured leaf area indices (LAI), eddy-covariance measurements of CO2 fluxes (NEE) or species-level phenological observations (SPC) are used
for validation. SOS and EOS are derived from modeled and observed LAI time series by choice of a threshold ranging between 25–75% (see methods
section). For bold numbers R is significant with p < 0.0001 (two-tailed T-test, m0: R = 0).
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3.3.3. Swiss Lowland
[72] A 49-year-long SOS time series in the Swiss

Lowland [Rutishauser et al., 2007] allows testing the
model’s performance at decadal time scale. R only increases
from 0.55 in ORIGINAL to 0.60 in PROGNOSTIC (Table 6).
Modeled SOS in both models occurs around 5 days earlier
than observed, a systematic difference already found at the
other two validation sites. Magnitude of simulated inter-
annual variability is larger than observed, but patterns match

well: 1959, 1961, 1974, 1981 and 1989 have a early SOS
while 1958, 1965, 1973, 1980, 1982 and 2001 have a late
SOS in both the observations and in PROGNOSTIC
(Figure 7). Changing the threshold at which SOS is diag-
nosed from modeled LAI substantially influences predictive
skill: R = 0.73 for 25% and R = 0.52 for 75% (significant
with p < 0.0001; Table 6). Late years 1984–1986 or 2002 or
the early year 1990 can only be reproduced by choice of a

Figure 6. ORIGINAL and PROGNOSTIC model simulations: SOS and EOS for a deciduous broadleaf
forest in eastern US validated with ground observed phenological phases of individual species for 1990–
2006.

Figure 7. SOS defined by a 50%, 25% and 75% LAI threshold from PROGNOSTIC model simulations
for mixed forest pixels over Switzerland validated with a reconstructed time-series of SOS from ground
observations for 1958–2006.
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25% threshold, for which however the bias increases to
�18.5 days (Figure 7).
[73] The model can be used to explain phenological

processes responsible for the simulated temporal patterns
which would not be possible from data alone. The temper-
ature factor f(Tm) correlates with R = 0.58 to observed SOS
and the light factor f(Rg) has R = 0.43. No correlation is
found for the moisture factor f(vpd) with SOS as expected.
Therefore, while temperature or light alone have substantial
skill to reproduce spring variability for this temperate
ecosystem, both are needed: temperature controls in years
with late SOS while in years with early SOS light is
limiting.

4. Discussion

[74] Advantages and disadvantages of remote sensing
data assimilation for reducing uncertainty in model param-
eters is now discussed, followed by an analysis of simulated
phenological variability and a discussion of validation
issues revealed by this study.

4.1. Remote Sensing Data Assimilation

[75] Climate control parameters influence the phenolog-
ical timing and phase (R in Table 5) while structural
vegetation parameters define the magnitude of FPAR or
LAI (RMSE in Table 5). Simulated timing can be compared
to ground observed phenological events [Studer et al., 2007]
as shown in the validation of our results. For the application
in global land surface models a realistic timing is valuable
in order to improve vegetation biochemistry and therefore
the seasonal course of terrestrial water and carbon
exchanges. A more realistic vegetation structure on the
other hand, like a clearly defined contribution of the
deciduous cover for ENF or the maximum LAI for EBF,
mostly influences vegetation biophysics in those models
(like albedo or aerodynamics). Structural parameters have a
smaller influence on biochemistry since vegetation is inac-
tive when approaching FPARmin and photosynthesis is
insensitive to LAI variability when LAI is close to LAImax.
[76] By use of data assimilation structural vegetation

parameters were better constrained than climate control
parameters simply because vegetation structure is explicitly
observed while the climate control parameters driving the
predicted and observable phenological states are an implicit
part of the prognostic phenology model. Also, phenological
events which constrain climate control parameters only
occur 1–2 times each year and the events can be shorter
than the MODIS 8-day compositing period (for example,
rapid spring greenup at site 12). The attempt to constrain
climate control parameters (moderately successful in this
study) and time averaging parameters (highly unsuccessful
in this study) should therefore be repeated with homoge-
nized and calibrated AVHRR-based long-term data records
extending back to the 1980s [Tucker et al., 2005; Masouka
et al., 2007]. However data assimilation relies on the data
quality layer which cannot be provided for most AVHRR-
based data sets and is a unique feature of newer remote
sensing products like those derived from MODIS.
[77] It should be mentioned that the well constrained

structural vegetation parameters depend on satellite retrieval
algorithm [Tian et al., 2002;Morisette et al., 2006;Garrigues

et al., 2008] and have a high-spatial heterogeneity below the
1 km MODIS pixel size [Cohen et al., 2003, 2006].
Variability of structural vegetation parameters also increases
at larger scales. Confirming results by Fisher and Mustard
[2007] and Fisher et al. [2007] we for instance find that at
Harvard Forest (7 km 	 7 km) predicted LAI explains 92%
of MODIS DBF pixels while for the Swiss Lowland
(0.25� 	 0.25�) predicted LAI explains only 56% of all
MODIS MF pixels. Instead of using pixel-predominant
vegetation classes we suggest that a linear mixing of 10–
20 plant functional types for each MODIS pixel can account
for landscape heterogeneity. It would further eliminate
structural vegetation parameters like FPARmin, FPARmax

or fv which explicitly account for subgrid-scale landscape
heterogeneity in our experiments.

4.2. Predicting Phenology

[78] Site 23 reveals that SOS in warm years can be driven
by light and not just by temperature. EOS is mainly
controlled by light because light becomes limiting before
temperature in autumn. DBF temperature control parameters
are constrained to within 0.5–1.0 K and we confirm
previous estimates of these parameters. DBF light control
parameter uncertainty is 1–2 W m�2 and it is substantially
larger for boreal ENF sites, introducing some errors in
predicting EOS of the deciduous fraction for ENF (for
example, site 13, Figure 3c). Boreal ENF phenology is
complex to model because there is no single climatological
predictor which can be identified for either SOS or EOS.
Also, climate control parameters are weakly constrained for
boreal ENF sites because they only account for the decid-
uous fraction within those forests which is further highly
variable from site to site.
[79] Concurrent with studies of tropical EBF heat and

water fluxes [da Rocha et al., 2004] we find that light is the
main predictor for tropical EBF phenology. Large uncer-
tainties in the order of 5–15 W m�2 for tropical light
controlling parameters are due to remaining uncertainties in
the satellite data (see, for example, Figure 3b). Results
should still be robust because of the employed quality
screening and uncertainty estimation. For instance, for
KM83 (10) 80.7% and for site KM67 (11) 85.5% of the
MODIS data were not used for assimilation. Figure 3b
further shows that the predicted FPAR and LAI is high
and almost constant during most of the cloudy wet season
and during the aerosol contaminated dry season when
MODIS data have the largest error bars. In PROGNOSTIC
tropical EBF shed most of their leaves at the end of the wet
season and grow them back during the dry season. This
result agrees with previously published ground observed
[Hutyra et al., 2007] and satellite observed phenological
patterns for the Amazon [Huete et al., 2006; Myneni et al.,
2007]. It disagrees with other prognostic phenology models
employed in climate research (Figure 1b).
[80] Reliable satellite observations in sub-tropical and

mediterranean areas result in highly constrained light and
moisture control parameters for drought-deciduous vegeta-
tion with a remaining uncertainty of 2–5 W m�2 and less
than 1 mb respectively. vpd is a good predictor for leaf
senescence in mediterranean grasslands while light controls
SOS in early spring. By use of data assimilation correlations
switch from negative and non-significant to highly signif-

G04021 STÖCKLI ET AL.: DATA ASSIMILATION AND PHENOLOGY MODELING

15 of 19

G04021



icant on the order of 0.8 and RMSE decreases to around
25% of initial RMSE (Table 5). Instead of vpd either soil
moisture or precipitation could also be used as predictors.
Soil moisture was not used here because it requires a
complex parameterization of subsurface hydrology and
vegetation biophysics. Furthermore soil moisture magnitude
and variability is largely model dependent and therefore not
suitable for a generally applicable phenology model. Use of
precipitation was unsuccessful in initial experiments (not
shown) since an integrating storage process (in other words,
a soil hydraulic model including biophysical sources and
sinks) would be required to model the effect of precipitation
on phenology. In support of Jolly et al. [2005] it is found
here that vpd is a very suitable predictor for drought-
deciduous phenology since it is a good surrogate for soil
water availability [Hunt et al., 1991].

4.3. Validating Phenology

[81] Arbitrarily chosen thresholds serve as transfer func-
tions to relate predicted phenological states like FPAR and
LAI to ground observed phenological phases. The 50%
threshold has been widely used in literature and also in our
study, but PROGNOSTIC (and therefore MODIS-derived)
SOS derived with a 50% threshold occurs 5–20 days earlier
than observed SOS at the chosen validation sites. Despite
this absolute bias inter-annual variability of SOS is accurate
to within 2–3 days which is in accordance with findings by
Schwartz et al. [2002] and Studer et al. [2007].
[82] The bias might be explained because ground cover

can emerge before trees green up [Ahrends et al., 2008] and
ground cover is not accounted for in most ground-based
radiative LAI measurements or in phenological observations
of phases like bud-burst or flowering. While this might be
an issue at Harvard Forest, daily tower-based photographs at
Morgan Monroe (not shown) reveal a dormant under-story
at the time of PROGNOSTIC SOS. As shown in Figure 7
and in Table 6 the use of a 25% threshold raises correlation
(R = 0.73) between modeled and observed SOS but it
creates a negative bias of �19 days. A 75% threshold on
the other hand decreases R to 0.52 but it has a better bias of
+7 days. The 75% threshold captures a later stage of
greenup which is likely more in accordance with observed
bud-burst of tall trees. Our findings at site 23 further provide
evidence that light can modulate greenup after temperature
has initiated leaf-out. A more complicated set of environ-
mental controls would therefore explain the lower R for the
75% threshold. The 25% threshold has a strong correlation
to temperature and defines a stage of greenup which is
highly predictable. We find that at Morgan Monroe modeled
SOS derived by a 50% threshold and SOS derived from
NEE only differs by 2.4 days. NEE integrates both plant
physiological and phenological activity [Law et al., 2002]
and is more comparable to modeled FPAR and satellite-
derived FPAR. This further supports our methodology since
phenological parameterizations in climate models should be
coupled to the seasonal cycle of terrestrial photosynthesis
rather than to observable events like bud burst or flowering.
[83] Prediction of EOS inter-annual variability and abso-

lute timing was not successful at either Harvard Forest or
Morgan Monroe. Although NEE-derived EOS at Morgan
Monroe is accurate to within 2 days, inter-annual variability
of modeled EOS has a negative correlation. The previous

section demonstrated that modeled EOS at temperate DBF
sites is controlled by light. Solar radiation has a small inter-
annual variability compared to the temperature-driven SOS
so predictive skill of the model is expected to be rather
small. It is also likely that other biotic and climatological
controls not simulated in the model might be responsible for
observed EOS variability.
[84] The Swiss Lowland validation experiment demon-

strated that PROGNOSTIC has not only skill on inter-
annual and local but also decadal and regional time and
spatial scales. The model simulates a difference between
late years in the 1980s and early years in the 1990s. A
prognostic phenology model trained with only 7 years of
MODIS data covering a regional spatial domain can be used
to predict several decades of SOS with inter-annual and
decadal variability comparable to a completely independent
49-year-long phenological validation record composed of
flowering and bud burst of individual ground-observed
species.

5. Conclusions and Outlook

[85] Most current diagnostic satellite-derived phenology
data sets are unreliable during the cloudy wet season and
aerosol-loaded dry season in tropical climates or the dark
winter and snow covered spring season in boreal and arctic
climates. Simple empirical phenology models like Spring
Indices [Schwartz et al., 2006] or the statistical Spring Plant
[Rutishauser et al., 2007] successfully reproduce interannual-
decadal variability for the temperate DBF biome. On the
other hand most mechanistic representations of global
phenology used in climate models fail to reproduce obser-
vations when applied to a broad range of climate zones and
ecosystem types as reviewed in the introduction of this
study. This mismatch can be attributed to both a weak
understanding of phenological processes [Kucharik et al.,
2006] and the uncertainty of empirical model parameters
that are often derived from a few local observations in
temperate ecosystems and applied globally as part of
climate model simulations.
[86] A comparison of Figures 1 and 3 demonstrates that

these uncertainties can be successfully mitigated at a range
of climate zones by use of remote sensing data assimilation.
Modeled drought-deciduous phenology is highly improved
because current phenology models do not well represent
drought-deciduous phenology and satellite data are very
reliable in sub-tropical climates. Moisture and light control
parameters can be successfully constrained for such ecosys-
tems. Also, vpd is found to be a more suitable predictor for
moisture control than rainfall without the need for an
explicit representation of soil moisture processes. Tropical
EBF is revealed to be light controlled during the wet season
and greens up during the dry season. High uncertainty of
satellite observations and low seasonal FPAR and LAI
variability result in a moderate uncertainty of underlying
light control parameters. However the use of a phenology
model constrained by only a few high-quality satellite
observations effectively overcomes the deficiency of most
current satellite-only phenological data sets in tropical areas.
[87] The model further reproduces the inter-annual to

decadal variability of SOS with correlations ranging between
0.6–0.9 when compared to independent ground observa-

G04021 STÖCKLI ET AL.: DATA ASSIMILATION AND PHENOLOGY MODELING

16 of 19

G04021



tions of phenological phases. The employed long-term
validation data sets [van Vliet et al., 2003; Rutishauser et
al., 2007] are however only available for temperate DBF
and MF ecosystems while arctic, mediterranean and tropical
ecosystems generally lack such validation sources. Since we
suggest that current parameterizations of drought-deciduous
phenology need to be improved, a broader set of phenology
data sets such as those described in Cleland et al. [2007]
need to be available for validation. Modern phenological
observation methods like NEE measurements from
FLUXNET [Baldocchi et al., 2001; Friend et al., 2007]
or camera-based vegetation indices [Richardson et al.,
2007; Ahrends et al., 2008] are further valuable validation
tools since they provide an integrated view of ecosystem
states.
[88] This study is a first step to improve phenological

parameterizations such as IBIS, CN or TRIFFID with a
high potential to mitigate uncertainties in the simulated
global water and carbon cycle of current climate models
[Friedlingstein et al., 2006]. In support of Kathuroju et al.
[2007] our prognostic phenology model based on satellite
remote sensing data of a new sensor like MODIS can be
superior to the data on which it is based. It is for instance
able to predict surface biophysical states when satellite
observations are of minor quality. It can be used for
numerical weather forecast or seasonal climate prediction
where both vegetation structural parameters and climate
control parameters need to be known to predict the state
of land surface vegetation before satellite data become
available. It is also a valuable tool to answer climate change
questions. For instance, as a hypothesis from our findings,
recently observed advances in northern hemisphere SOS
might come to a halt when temperate deciduous vegetation
switches from temperature-driven SOS in early and warm
springs of extreme years today and in the past [Rutishauser
et al., 2008] to a possibly light-limited SOS in a predicted
future climate [Intergovernmental Panel on Climate Change,
2007a].
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