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a b s t r a c t

Terrestrial isoprene emissions directly respond to leaf temperature, photosynthetically active radiation
(PAR), soil moisture, and plant characteristics such as leaf area index (LAI). Prior work has estimated
isoprene interannual variability at 5e25%, however the relative contributions of individual environ-
mental factors have not been delineated. A biogenic isoprene emissions model (MEGAN) is coupled to
a regional climate model (RegCM4-CLM) to evaluate variations in monthly isoprene emissions. We use
a novel approach to estimate the contribution of environmental factors to monthly averaged isoprene
flux variability and analyze regional differences over the contiguous U.S. for summers spanning 1994
e2008. Consistent with earlier studies, isoprene flux varies 8e18% interannually with the greatest
variability occurring in July. Yearly changes in isoprene flux are poorly described by any single envi-
ronmental factor, yet temperature and soil moisture together account for at least 80% of the total
isoprene flux variations for all regions during the summer. Soil moisture plays the most significant role in
controlling variability over the Northeast and Southeast, but only exceeds temperature in importance
during August in the Northeast and July in the Southeast. PAR and LAI are nearly negligible contributors
to summer interannual variability. Uncertainty in climate model soil moisture parameterizations can
drive large variability in isoprene fluxes when including the isoprene soil moisture dependency factor,
suggesting a need for further validation.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Isoprene (C5H8) is an important ozone precursor in the presence
of nitrogen oxides (NOx) (Chameides et al., 1988) and its oxidation
products can condense to produce secondary organic aerosols
(Dentener et al., 2009). Both tropospheric ozone and atmospheric
aerosols can lead to poor air quality and also influence the Earth’s
radiative budget either directly or indirectly (Andreae and Rosenfeld,
2008; Zhao et al., 2011). The primary source of isoprene to the
atmosphere is emissions from terrestrial vegetation, with global
estimates between 400e700 Tg yr�1 (Guenther et al., 2006; Arneth
et al., 2008; Muller et al., 2008; Ashworth et al., 2010). Isoprene
emissions are known to be controlled by several environmental
factors, including temperature (Petron et al., 2001), light (Sharkey
. Tawfik), reto.stoeckli@
oldstein), spressley@wsu.edu
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et al., 1996), soil moisture (Llusia et al., 2008), ambient carbon
dioxide (CO2) concentrations (Wilkinson et al., 2009), and phenology
(Kuhn et al., 2004). As coupled climate-chemistry models move
toward long-term simulations of tropospheric chemical environ-
ments (Fu et al., 2011), it is necessary to understand how individual
environmental factors contribute to interannual isoprene flux
variability.

Past studies have used observed isoprene concentrations and
fluxes to estimate isoprene flux variability. In a hardwood forest site
in Michigan, four years of canopy-level isoprene flux measure-
ments showed low (w10%) inter-annual variability during the
summer (Pressley et al., 2005). Although year-to-year variability at
this site was strongly correlated to light and temperature, other
unnamed environmental variables were implicated in controlling
emissions variations. In Texas, two studies have investigated
isoprene flux interannual variability (Gulden et al., 2007; Warneke
et al., 2010). Gulden et al. (2007) concluded that modeled summer
emissions yielded greater interannual variability when leaf area
index (LAI) was allowed to respond to atmospheric forcing data
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(25%) as opposed to the typical LAI annual climatology (12%). In the
second study, aircraft measurements of isoprene concentrations
were used to infer isoprene emissions over northeastern Texas in
2000 and 2006 (Warneke et al., 2010) and found a factor of two
difference in isoprene flux estimates between the two years. This
differencewas attributed to the unusually warm and dry conditions
recorded in the summer of 2000, however the factor of two
uncertainty in the inferred isoprene emissions is comparable to
inter-annual variability. Comparing these inferred isoprene fluxes
to several emissions inventories, Warneke et al. (2010) further
demonstrated that models had difficulty capturing the observed
interannual variation and was likely due to the lack of a direct soil
moisture suppression of emissions during drought stress and/or
lack of yearly varying LAI. However, neither of the twoTexas studies
account for direct emission suppression under decreasing soil
moisture, which has been found to reduce global emissions by 20%
(Muller et al., 2008).

At the regional scale, satellite-derived observations of formal-
dehyde column concentrations have been used to infer top-down
isoprene emission fluxes and quantify isoprene flux interannual
variability (Abbot et al., 2003; Palmer et al., 2006; Duncan et al.,
2009). Abbot et al. (2003) used this technique with the Global
Ozone Monitoring Experiment (GOME) satellite to estimate August
interannual variability of 30% over the southeastern United States.
They found that flux variations followed surface air temperature
but interannual changes in temperature alone could not explain the
variations in isoprene emissions. Palmer et al. (2006) also used
GOME formaldehyde measurements to quantify interannual vari-
ability and estimated a range between 22e35% during the summer
and suggested that 75% of variations are controlled by surface
temperatures. In Palmer et al. (2006), the temperature-driven
variation was estimated from the temperature dependency algo-
rithm of an empirically-based isoprene emissions model (Guenther
et al., 1995). A subsequent study focusing on the southeastern U.S.
and utilizing higher resolution formaldehyde measurements
(Ozone Monitoring Instrument; OMI) were in agreement with
earlier estimates of variability (22% for the summer) and also
implicated temperature as the primary driver (Duncan et al., 2009).

A global study using an interactive vegetation model supports
the importance of land use in emissions calculations and estimates
lower interannual variability (10%) for North America (Lathiere
et al., 2006), yet we note that this study also does not account for
emissions reductions due to soil water limitations (Guenther et al.,
1995). Arneth et al. (2011) found that different isoprene emissions
algorithms using the same climate forcing data estimated similar
isoprene flux interannual variability. This suggests that climate
variables (e.g. temperature, radiation, LAI, and soil moisture) play
a strong role in controlling year-to-year emissions changes. Further,
Arneth et al. (2011) found that interannual variability over the mid-
latitudes was relatively small (5e10%) and attributed this to con-
flicting climate variable interactions. For example, warmer
temperatures that increase emissions are well correlated with drier
soils, which decrease emissions. This further emphasizes the need
to quantify the role each control variable has on emissions
variations.

Several of these studies (Pressley et al., 2005; Duncan et al.,
2009; Warneke et al., 2010) cited are for specific locations where
differences in observed isoprene flux variability may reflect
regional differences. This highlights the need for a multi-region
analysis of isoprene variability. As noted by Duncan et al. (2009),
evaluating the influence of an individual climate variable on
observed isoprene flux variability is difficult due to the strong
correlations between climate variables. Although prior studies have
provided estimates of the isoprene flux variability, there is little
attribution of each environmental factor to flux variability that
accounts for the direct effect of soil water limitations on emissions.
Studies that include the soil moisture dependency can reduce
global emissions up to 7e20% (Guenther et al., 2006; Muller et al.,
2008) and can improve regional agreement with observations
(Muller et al., 2008). Additionally, most studies operate on global
domains and use land models forced with half-hourly or longer
atmospheric data, resulting in coarse temporal and/or spatial
resolution. Due to the heterogeneous nature of isoprene source
strength and the sensitivity to temporal resolution of climate data
(Ashworth et al., 2010), using a coupled, high-resolution regional
model is likely to improve understanding of the influence of
environmental factors on isoprene flux variability. The primary
objectives of this study are to quantify the relative contributions
of temperature, light, LAI, and soil moisture on isoprene
emissions variability and to assess regional differences in the
environmental variables controlling emissions over the contiguous
U.S. A secondary goal is to introduce a simple methodology for
calculating percent contributions of the environmental depen-
dency factors that could be applied to other environmental control
variables not considered in this study.
2. Methods

A biogenic emissions model (the Model of Emissions of Gases
and Aerosols from Nature; MEGAN) (Guenther et al., 2006),
described in Section 2.1, is coupled to the International Centre for
Theoretical Physics (ICTP) Regional Climate Model version 4
(RegCM4; (Giorgi et al., in press)) to examine the relative contri-
butions of leaf temperature, soil moisture, photosynthetically active
radiation (PAR), and LAI to biogenic isoprene emissions. RegCM4 is
a compressible, hydrostatic, primitive-equation model with a land
surface described by the Community Land Model version 3.5
(Oleson et al., 2008), which determines the canopy-scale environ-
ment variables for input into MEGAN (Section 2.2). Based on
RegCM4-CLM-MEGANmodel output, the contribution of individual
environmental factors is calculated as described in Section 2.3.
2.1. Biogenic isoprene emissions model: MEGAN

MEGAN is a biogenic emissions model (Guenther et al., 2006)
that parameterizes observed relationships to estimate emissions.
The canopy environment version of MEGAN determines isoprene
emissions for each model grid cell as:

E ¼ εrCCEgPTgSMgageLAI (1)

gPT ¼ gTðgPsun þ gPshadeÞ (2)

where E is the isoprene emission flux (mg h�1m�2), ε is a standard
emission factor taken at standard conditions described in Guenther
et al. (2006) (mg h�1m�2), r is the in-canopy loss or production
factor (¼0.96), Cce is an empirical adjustment factor for the canopy
environment (¼0.4), and gT, gP, gSM, and gage describe the influence
of leaf temperature, PAR, soil moisture, and leaf age on isoprene
emissions, respectively. The canopy description is based on that of
the RegCM4 land model, the CLM version 3.5. CLM contains a single
layer canopy model that is divided into sunlit and shaded fractions,
which allows the calculation of gP and emissions based on the
fraction of sunlit and shaded leaves (Eq. (2)). A high-resolution 3000

emission factor map, ε, is used (http://cdp.ucar.edu) and bi-linearly
interpolated to themodel gridcell-level and is not linked to the CLM
land cover type. The effects of past temperature and light condi-
tions on time scales of 24 hours and 10 days are included in the
current implementation.

http://cdp.ucar.edu
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The response of isoprene emissions to soil moisture is defined as
(Guenther et al., 2006)

gSM ¼
X
j

f jrootmax
�
0;min

�
1;

�
qj � qwilt

�.
0:06

��
(3)

where f jroot is the fraction of root in a given model soil layer(j), qwilt
is the wilting point, and qj is the volumetric soil moisture (m3m�3)
at a given layer. The current parameterization only captures the
effects of long-term drought conditions and can only reduce
emissions (Pegoraro et al., 2004); short-term drought responses are
not included. Inclusion of gSM in isoprene emissions models indi-
cates improved measured-modeled agreement for isoprene fluxes
(Muller et al., 2008). The CLM method for calculating gSM includes
ten unevenly spaced soil layers and determines f jroot for each soil
layer using plant functional types (PFT). Up to four different PFTs
can exist in a single grid cell providing a more detailed land surface
description in regions with heterogeneous vegetation types. All
gamma dependency factors are calculated at the PFT-level and then
aggregated to the gridcell-level.

2.2. RegCM4-CLM experiment design and input data

RegCM4-CLM has been shown to reproduce mean climatological
conditions over the contiguous United States (Tawfik and Steiner,
2011). The horizontal grid spacing is 60 km centered at 96W and
38N over the continental US (Fig. 1) and the atmosphere contains 18
vertical layers inhybrid-sigma coordinates. The time resolution is 200
seconds for the dynamical core, and the land surface (CLM) and
biogenic emissions model (MEGAN) are called every 600 seconds
within the coupled model framework. Because RegCM4 is a limited
area model, we use 6-hourly European Centre for Medium-Range
Weather Forecasts Interim Reanalysis (ERA-Interim) boundary
conditions for the atmosphereandweekly-prescribedERAsea surface
temperatures to drive theRegCM4-CLM(Deeet al., 2011). Simulations
are performed from 1992e2008, and the model is initialized in June
1992 using average soil moisture from the Global Land Data Assimi-
lation System (GLDAS) CLMmodel realization (Rodell et al., 2004) and
run for 1.5 years to achieve model equilibrium. Model output is
analyzed for the last 15 simulation years (1994e2008).

As prior studies have demonstrated, accurate biomass density
information canplaya key role estimating regional isopreneemission
rates (Lathiere et al., 2006; Gulden et al., 2007). Therefore, a half-
degree daily satellite-derived LAI product (Stockli et al., 2011) is
used to represent seasonal and interannual variations in LAI. The LAI
data are spatially bi-linearly interpolated to the model grid and
a

Fig. 1. Summer (JuneeJulyeAugust) average of (a) absolute isoprene emissions (mgm�2 h�

Southeast (SE), Northeast (NE), Plains (PL), and West (WE).
1994 LAI is used for the model spin-up years. The summer
(JuneeJulyeAugust; JJA) is the focus of analysis due to the high
isopreneemission rates and its corresponding relevance to air quality.

2.3. Variability attribution calculation

To assess each variable’s relative contribution to emissions,
a first order Taylor series approximation is performed on isoprene
emissions (E). E can be written in two ways, as a Taylor series (Eq.
(4)) and as a variation about a mean (Eq. (5)):

E ¼ E þ vE
vgT

DgT þ
vE

vgSM
DgSM þ vE

vgP
DgP þ

vE
vLAI

DLAIþ O2 (4)

E ¼ E þ dE (5)

Setting these equations equal to one another and dropping higher
order terms (O2), the equation becomes

dE ¼ vE
vgT

DgT þ
vE

vgSM
DgSM þ vE

vgP
DgP þ

vE
vLAI

DLAI (6)

where dE is the total variability about the mean and each term on
the right hand side is a single dependency factor’s contribution to
the total variability. The D term on the right-hand side of the
equation is the deviation from the mean for a particular year and
month of a given dependency factor. Hereinafter, we refer to each g

term as a dependency factor (e.g., gT is the “temperature depen-
dency factor”). To retrieve a percent contribution to the total vari-
ation, dE, each term on the right hand side is correlated with dE.
The R2 correlation coefficient measures the percent to which
a dependency factor can explain variations in dE using a linear
relationship. The influence of higher order, non-linear terms on
reconstructing dEwas found to contribute less than 10% to the total
calculated flux, suggesting that 1st order linear terms represent
a majority of dE and gamma dependency factors are largely inde-
pendent of one another. This simple Taylor series approach could be
applied to other environmental factors not considered in this study
such as CO2 (Heald et al., 2009).

3. Results

3.1. Comparison with observed flux measurements

The highest absolute modeled isoprene emissions occur over the
southern Plains and southeastern U.S. during JJA (>5 mgm�2 h�1;
b

1) and (b) normalized isoprene flux, EN, for 1994e2008 with averaging regions for the



A.B. Tawfik et al. / Atmospheric Environment 54 (2012) 216e224 219
Fig. 1a) due to the underlying vegetation cover and high isoprene-
emitting vegetation located in this region. Fig. 2 compares the
average diurnal isoprene emissions from RegCM4-CLM against two
mid-latitude measurement sites, Harvard Forest for July 1995
(Goldstein et al., 1998) and the University of Michigan Biological
Station (UMBS) for July 2000 (Pressley et al., 2005). RegCM4-CLM
generally underestimates emissions at both locations with the
largest underestimate occurring at UMBS by a factor of 4 during the
daily maximum. Model evaluation improves when compared to
Harvard Forest emissions, where the model underestimates the
midday peak by only 2 mgm�2 h�1. These emissions are consistent
with other modeling studies comparing MEGAN versus Harvard
forest measurements, with the model underestimating emissions by
a factor of 1.35 (Muller et al., 2008). For the north- and southeastern
U.S., othermodeling studies findMEGANoverestimates emissions by
a factor of 2 (Stavrakou et al., 2009; Warneke et al., 2010). Because
absolute isoprene flux emissions depend heavily on the ε map
(Arneth et al., 2008), the large biases found at UMBS may be due to
underestimated ε at that particular model gridcell.
3.2. Normalized isoprene emissions and interannual variability

To remove the isoprene emissions bias related to vegetation
information contained within ε found in Section 3.1, we calculate
a normalized isoprene flux (EN¼ E/ε). Using EN isolates the effects of
the dependency factors on emissions (Eq. (1)) because the canopy
chemical production/loss factor, r, and empirical coefficient, Cce, do
not vary spatially. Normalized isoprene emissions are greatest East
of the Rockies with the highest fluxes over the eastern half of Texas
into Arkansas and Louisiana (Fig. 1b). Additionally, the locations
with the greatest EN generally correspond to regions with the
greatest absolute emissions (E) (Fig. 1a). This implies that areas
containing the highest base ε also have the strongest contributions
from environmental controls. Because the temperature and light
dependency factors vary non-linearly, a 1 K temperature decrease
Fig. 2. Average diurnal cycle of absolute isoprene emissions (mgm�2 h�1) at two mid-
latitude stations: July 1995 at Harvard Forest (black) and July 2000 at the University of
Michigan Biological Station (orange). Dashed lines are from modeled RegCM4-CLM-
MEGAN output (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.).
(10%) and 15 Wm�2 decrease in radiation (11%) corresponds to
a 0.45 mgm�2 h�1 (or 22%) reduction in E. Both LAI and soil
moisture modify emissions linearly in the current parameterization
and are unlikely to be important intra-seasonally when changes in
temperature and light vary most.

Interannual variability (IAV) of isoprene emissions for each
month and region is calculated using EN (Table 1). Here we define
IAV as the average absolute percent departure from the mean for
a particular month:

IAV ¼ 1
n

Xn

y¼1

����
xy;m � xm

xm

����� 100 (7)

where xy;m is isoprene flux for a particular year (y) and month (m),
xm is the average isoprene flux for month m over all years of the
simulation (1994e2008) and n is the total number of simulation
years.

In the Southeast, IAV ranges from 13% in July to 7.8% in August.
The northeast demonstrates similar behavior with greatest vari-
ability in July (13.7%) but comparably weaker variability in June and
August. Year-to-year variations in isoprene emissions over the
Plains peak in early summer (10.4%) and gradually decrease as the
summer progresses. IAV for the West is greatest relative to the
other regions with up to 18.4% variability on average for July. The
consistently high IAV in summer emissions in the West can be
attributed to high single-year departures from the mean, such as in
August and July of 1998. This was a known strong El Niño year
where percent departure from mean reached 60% (Fig. 3) and is
consistent with prior studies demonstrating global isoprene
emissions are higher during strong El Niño events (Naik et al., 2004;
Lathiere et al., 2006). When excluding these single year extremes,
yearly departures from the mean more closely resemble variability
seen in other regions. It should also be noted that the West has
weaker emissions (Fig. 1), therefore a 40% departure from the mean
in the aggregate dependency factors results in only
a 0.016 mgm�2 h�1 change in absolute emissions. Other regions
occasionally show large departures, such as the Southeast in June
1998 and the Northeast in July for 2005 and 2007 (Fig. 3). The large
deviations from the mean found in the Southeast for July occur in
2000 and 2007, corresponding with strong drought years
(Lawrimore et al., 2001; Luo and Wood, 2007).

3.3. Variability of dependency factors and relationship with
isoprene emissions

Two metrics are used to assess the sensitivity of emissions to
each dependency factor. The first is linear correlation, where strong
correlations indicate the specific dependency factor has a large
effect on emissions. Fig. 4 shows the relationships between
a dependency factor (gT, gP, gSM, and LAI) and EN for each region.
The second metric is the IAV of the individual dependency factors
(Fig. 5). The behavior of these metrics and implications on
controlling variability are discussed for each region below.

For the Southeast, gT is well correlated with EN for June
(R¼ 0.64) and August (R¼ 0.65), but decreases for July (R¼ 0.3). IAV
of gT peaks in August (16%) and has minimum variations in July
Table 1
Interannual variability (IAV) of isoprene flux by region and month, 1994e2008.

Region June July August

Southeast 11.8% 13.0% 7.8%
Northeast 10.5% 13.7% 10.2%
Plains 10.4% 8.4% 8.1%
West 17.7% 18.3% 14.9%



Fig. 3. Percent departure from mean of normalized isoprene flux (EN) for June, July, and August over the (black) Southeast, (red) Northeast, (blue) Plains, and (orange) West regions
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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(11.5%; Fig. 5). Variations in gP are weak for the Southeast (<4.5%),
but exhibit good correlation with EN for July (R¼ 0.59) and August
(R¼ 0.58). In July, the soil moisture dependency factor, gSM, and LAI
are also well correlated to EN (R¼ 0.56 and R¼ 0.66, respectively);
however, LAI varies by less than 2% from year to year (Fig. 5) and is
further highlighted by the tight clustering pattern around a single
LAI value in Fig. 4. gSM and gT are the only dependency factors to
exhibit strong correlation with EN as well as IAV greater than a few
percent (11.5% for gSM; Fig. 5). We note that gSM and gT are strongly
negatively correlated (R¼�0.69, �0.59, and �0.85 for JJA) and
correlations between gSM and EN are weak outside of July (R¼ 0.08
for June and R¼�0.27 for August). The implications of the strong
correlation between gSM and gT are discussed in Section 3.4.

The Northeast consistently demonstrates the strongest relation-
ship between temperature and ENwith correlations of 0.81, 0.83, and
0.53 for June, July, August, respectively. Throughout the summer, IAV
in gT is also large relative to other dependency factors (11e18% for
JJA). For light dependence, July is the only month that gP shows good
correlation with EN (R¼ 0.55). The soil moisture dependency factor,
gSM, exhibits weak correlation with EN throughout the summer. IAV
of gSM for a given month increases as summer drying deepens from
June (3.8%) to August (10.5%). Similar to the Southeast, gT and gSM are
negatively correlated for JJA (see Section 3.4). Finally, LAI is not well
correlated with normalized emissions and year-to-year variability is
low (<1.5%) throughout the summer, making it an unlikely driver of
emissions in the Northeast.
The Plains exhibit the highest average temperatures of all the
regions especially in August of 2000 (gT¼ 2.05 and a corresponding
average temperature of 303 K), a drought year (Warneke et al.,
2010). Despite the relatively warm temperatures and large IAV of
gT (19, 13, and 21% for JJA), gT correlates well with EN only in early
summer (R¼ 0.69 in June; Fig. 4). The influence of gT on EN is
dampened later in the summer for July (R¼ 0.1) and August
(R¼ 0.38) due to the negatively correlated relationship between gT
and gSM. The light dependency factor, gP, is the only dependency
factor to remain well correlated for all months in this region
(R¼ 0.5e0.58), although IAV of gP is small (e.g. less than 4.5%
variability). LAI and gSM do not show any strong correlationwith EN
over the Plains throughout the summer. The soil dependency factor,
gSM, varies between 11e17% interannually which is much greater
than gP variability (Fig. 5). The possible consequence is that
although gSM has a weaker correlation with EN, higher variability
may still influence EN IAV to a greater degree than gP. LAI has the
lowest interannual variations of all the dependency factors at less
than 3%.

EN for the West are the lowest and do not vary by more than
0.38, or 0.1 mgm�2 h�1 in absolute emissions. Low emissions
notwithstanding, gT is identified as the dependency factor with the
strongest influence on EN for the West in June (R¼ 0.51) and
comparable to gSM in August (R¼ 0.56). Light dependency is poorly
correlated (R¼ 0.03e0.31) with EN throughout the summer, as is
LAI. The response of EN to changes in soil moisture is important for



Fig. 4. Dependency factors, (orange) LAI, (black) gT, (blue) gSM, and (red) gP, versus EN for the Southeast, Northeast, Plains, and West regions (Fig. 1). Note that LAI is divided by 10 for
illustrative purposes. Each marker represents the monthly average for one simulation year averaged over the specified region (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.).
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July and August with correlations of 0.57 and 0.58, respectively.
Unlike other regions, the temperatureesoil moisture relationship
found in the West is not as pronounced for July and August with
correlation coefficients of �0.36 and �0.14, respectively. June is the
only month that is well correlated for the West (R¼�0.65). This
indicates that soil moisture and temperature are largely decoupled
for this region and can be considered independent of one another
outside of June.

In summary, the response of EN to environmental factors can
vary from region to region due to differences in regional climate.



Fig. 5. Percent interannual variability of temperature, PAR, soil moisture, and LAI
dependency factors (Eq. (1)).
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One similarity is that LAI and gP exhibit weak IAV across all regions
(Fig. 5) and, in the case of LAI, rarely correlates well with normal-
ized and absolute emissions. This lack of variability limits the
importance of LAI and gT as drivers of year-to-year emissions
changes. gT and gSM generally have the largest IAV coinciding with
strong correlations with EN, although correlations with EN are often
dampened by the negative correlation between gT and gSM.
Fig. 6. Correlation between (cyan) temperature, (blue) PAR, (red) soil moisture, (green) LAI d
factors against total isoprene flux interannual variability, dE. See Eq. (6) for dependency t
referred to the web version of this article.).
Additionally, gSM has the best correlation with EN where deeper
root structures are collocated with summer root soil drying.

It should be noted that gSM values from this study are generally
0.2 lower than values quoted by other studies (Guenther et al.,
2006; Muller et al., 2008). This reduced gSM is attributed to the
higher wilting point in RegCM4-CLM. More specifically, wilting
point ranges from 0.204e0.222 m3m�3 for this study over all U.S.
regions, which is considerably higher than values used by Muller
et al. (2008) (0.171 m3m�3 constant for all locations) and
Guenther et al. (2006) (0.01 m3m�3 for sand and 0.138 m3m�3 for
clay). This highlights the wilting point as an important model
parameter affecting the magnitude of gSM. Furthermore, lower gSM
in this study reduces the total U.S. summer monthly emissions by
5e8 Tg C month�1 as compared to Palmer et al. (2006), a study that
did not account for soil moisture effects on isoprene emissions (e.g.
gSM¼ 1).
3.4. Attribution of dependency factors to interannual variability

Using the first-order Taylor series approximation (Eq. (6);
Section 2.3), each dependency factor component is correlated with
dE. This correlation, R2, quantifies the degree to which variations in
dE can be explained by the linear relationship between dE and
a specific dependency factor (Fig. 6). The light dependency factor,
gP, shows poor correlation with dE (R2< 0.3) for all regions
throughout JJA, with the exception of June and July over the
Northeast and all of JJA for the Plains (Fig. 6). Although absolute
emissions are sensitive to changes in gP on daily to hourly time-
scales, low year-to-year variability (Fig. 5) and poor correlation for
most regions indicate that gP is likely not the primary driver of
interannual changes in isoprene emissions. Variations in LAI exhibit
an even weaker control on isoprene flux variability with R2 less
than 0.2 (Fig. 6). This is contrary to prior studies suggesting that
variations in LAI play a comparable role to temperature and light
over the eastern half of Texas (Gulden et al., 2007). However, we
note that Gulden et al. (2007) used an observationally constrained
phenology model to estimate LAI and did not include the influence
of soil water limitations on emissions. The indirect influence of soil
moisture on LAI variability may be the reason for this difference in
attribution and is discussed further in Section 4.

The soil moisture dependency factor, gSM, consistently shows
good correlationwith dE for theWest (R2> 0.5) and can account for
at least 50% of dE variations for the West. It should be noted that
this was the only regionwhere gT and gSM were not well correlated
(e.g. the dependency factors were decoupled). Similarly, the
Northeast in June and July has an R2 between dE and gT greater than
0.4. Aside from the West and early summer in the Northeast, no
ependency terms, and (gray) the sum of the temperature and soil moisture dependency
erms (For interpretation of the references to color in this figure legend, the reader is
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dependency factor is well correlated with dE suggesting that no
single dependency factor is a good predictor of emissions variability
despite the clear linear dependence of the parameterization (Eq.
(1)). This lack of correlation between any particular dependency
factor and dE (Fig. 6) likely arises from the opposite effects between
the dependency factors, such as with gT and gSM. When the nega-
tive correlation is strong between gSM and gT, the terms on the right
hand side of Eq. (6) are opposite in sign and can weaken the
influence each variable has on emissions variability (dE) (e.g., weak
correlations in Fig. 6). Summing the gSM and gT terms in Eq. (6) and
calculating an R2 correlation with dE, we find that over 80% of the
variations in isoprene emissions can be explained by the net
contribution of soil moisture and temperature (Fig. 6).

4. Discussion and conclusions

Temperature (Palmer et al., 2006; Duncan et al., 2009), land use
(Lathiere et al., 2005), and LAI (Gulden et al., 2007) have all been
implicated as important drivers of isoprene interannual variability
over the U.S. Here we evaluate isoprene flux IAV and compare the
relative importance of each dependency factor using a regional
climate model coupled with MEGAN, a widely used biogenic
emissions model. Average interannual variations of isoprene
emission fluxes are between 8e18%, similar to earlier work.

Past studies have suggested that emissions variability is largely
driven by the choice of climate forcing data (Arneth et al., 2011),
and in this study, MEGAN was contained within the RegCM4-CLM
model framework and isoprene fluxes were calculated every
10 min. Model biases in the underlying climate variables relevant to
MEGAN may serve to either amplify or dampen the percent
contribution of environmental factor presented in this study. As
Tawfik and Steiner (2011) have shown, RegCM4-CLM overestimates
summer temperatures over the Plains by an average of 2e4 K. This
warmmodel bias in the Plains regionmay result in overestimates of
absolute emissions, but likely does not influence the contribution
analysis because deviations about mean conditions are used.
RegCM4 overestimates temperature IAV in the Southeast and
underestimates the variability in the Plains, which overestimate
(underestimate) the total isoprene IAV (Table 1) for the Southeast
(Plains). Additionally, recent land surface model development has
shown that CLM3.5 tends to be too wet (Oleson et al., 2008; Decker
and Zeng, 2009), which would underestimate the soil moisture
contribution to variability especially in regions with highly variable
summer soil drying.

One of the primary differences between this study and prior
modeling work (Lathiere et al., 2006; Gulden et al., 2007) is the
implementation of the soil moisture dependency factor. The
exclusion of the soil moisture dependency factor neglects the direct
suppression of isoprene emissions and could lead to an over-
estimate of isoprene emissions in these models. Gulden et al.
(2007) and Lathiere et al. (2006) utilize dynamic vegetation
models that constrain LAI using remotely sensed vegetation prod-
ucts, which indirectly account for soil moisture effects on emissions
through modification of LAI. Therefore, a portion of the attribution
to LAI as a significant driver in Gulden et al. (2007) may include the
indirect response of soil moisture. In this work, LAI is a diagnostic
model state prescribed from a daily satellite-based reanalysis
dataset, which is not responsive to modeled soil moisture; the
indirect influence of realistic soil moisture is captured, however,
and LAI can modify atmospheric conditions. As a result, any feed-
back related to model biases in temperature, incident radiation, or
soil moisture are not amplified bymodifications to LAI, which likely
decreases the control LAI may have on isoprene emissions. A
simulation was performed using the 1994 daily LAI map for each
year (e.g. removing LAI interannual variations; not shown), and
percent contributions and interannual variations presented in
Section 3 were not significantly affected. This is consistent with
Muller et al. (2008) who also found that interannual variations in
LAI play a small role in determining yearly changes in isoprene flux
globally.

Although estimates of isoprene interannual variability appear to
be consistent across studies and different versions of the Guenther
algorithms (Guenther et al., 1995, 1999, 2006), attribution to
a single environmental variable is difficult. The results presented in
this study highlight the importance of using the soil moisture
dependency factor and quantify the relative contributions of
temperature, soil moisture, PAR, and LAI to yearly changes in
isoprene flux. We demonstrate that no single environmental factor
serves as a good predictor or driver of isoprene flux and that the
combined first-order contributions of the soil moisture and
temperature dependency factors account for at least 80% of
modeled isoprene flux variations. Because the soil moisture-
temperature relationship controls yearly variations in isoprene
emissions, greater attention should be given to improving soil
moisture isoprene flux parameterizations and soil moisture
representations in models.
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